ПРИБЛИЖЕННАЯ МОДЕЛЬ РАБОТЫ МАГНИТОГИРОСКОПИЧЕСКОГО ОРБИТАНТА В СОСТАВЕ СИСТЕМЫ ОРИЕНТАЦИИ ИСЗ ТИПА «МЕТЕОР-М»

А.В. Воронцов, А.В. Горбунов, Б.В. Карбасников, А.В. Козаков (ФГУП «НПП ВНИИЭМ»)

Рассматривается возможность применения магнитогироскопического орбитанта для вычисления параметров поворота КА относительно орбитальной системы координат. В его состав входит магнитометр (ММ), датчик угловых скоростей (ДУС) и БЦВМ. На вход БЦВМ поступает навигационная информация для расчета положения КА в географической системе координат и последующего вычисления по Международному эталону геомагнитного поля (МЭГП) расчетного вектора индукции магнитного поля Земли (МПЗ) в проекциях на оси орбитальной системы координат.

Использование информации, поступающей от МГО, позволяет осуществить приближенную ориентацию КА в орбитальной системе координат с тем, чтобы обеспечить необходимые условия для функционирования систем энергоснабжения и терморегулирования в сложившейся нештатной ситуации.

Ключевые слова: космический аппарат, магнитогироскопический орбитант, геомагнитное поле, магнитное поле Земли.

Введение

Магнитогироскопический орбитант (МГО) предназначен для вычисления параметров поворота ИСЗ относительно орбитальной системы координат [1]. В его состав входят магнитометр (ММ), датчик угловых скоростей (ДУС) и БЦВМ. На вход БЦВМ должна поступать навигационная информация для расчета положения ИСЗ в географической системе координат и последующего вычисления по Международному эталону геомагнитного поля (МЭГП) [2] расчетного вектора индукции магнитного поля Земли (МПЗ) в проекциях на оси орбитальной системы координат.

МГО может применяться в современных прецизи-

онных системах ориентации для повышения надежности за счет функционального резервирования при отказе штатных датчиков углового положения ИСЗ. Использование информации, поступающей от МГО, позволяет осуществить приближенную ориентацию ИСЗ в орбитальной системе координат с тем, чтобы обеспечить необходимые условия для функционирования систем энергоснабжения и терморегулирования в сложившейся нештатной ситуации.

На спутнике «Метеор-М» в качестве одного из мероприятий, направленных на решение комплексной задачи обеспечения

живучести ИСЗ [3], предусматривается возможность применения МГО при сбоях в работе инфракрасного построителя местной вертикали. Реализация такого режима работы штатной системы ориентации обеспечивается за счет входящих в ее состав ММ, ДУС и БЦВМ.

Принцип работы МГО

Пусть O – центр масс спутника, oxyz – его строительная система координат, OPQR – моделируемая в БЦВМ система координат, $\overline{\Theta}$ – вектор конечного поворота oxyz относительно OPQR, определяемый четырьмя параметрами Родрига-

Блок-схема системы координат

Гамильтона $\lambda_0, \lambda_1, \lambda_2, \lambda_3$ (рисунок). Эти параметры могут быть вычислены в БЦВМ решением известных дифференциальных уравнений [4] по известному вектору угловой скорости \overline{U} поворота *охуг* относительно *OPQR*. Если $\overline{\omega}$ – вектор угловой скорости поворота *охуг* относительно инерциальной системы координат $O\zeta\eta\xi$, а \overline{V} – желаемый вектор абсолютной угловой скорости поворота моделируемой системы *OPQR* относительно $O\zeta\eta\xi$, то $\overline{U} = \overline{\omega} - \overline{V}$.

Тогда упомянутые дифференциальные уравнения могут быть преобразованы к виду:

-- . .

. .

$$2\lambda_{0} = -(\omega_{X} - V_{P})\lambda_{1} - (\omega_{Y} - V_{Q})\lambda_{2} - (\omega_{Z} - V_{R})\lambda_{3};$$

$$2\dot{\lambda}_{1} = (\omega_{X} - V_{P})\lambda_{0} + (\omega_{Z} + V_{R})\lambda_{2} - (\omega_{Y} + V_{Q})\lambda_{3};$$

$$2\dot{\lambda}_{2} = (\omega_{Y} - V_{Q})\lambda_{0} + (\omega_{X} + V_{P})\lambda_{3} - (\omega_{Z} + V_{R})\lambda_{1};$$

$$2\dot{\lambda}_{3} = (\omega_{Z} - V_{R})\lambda_{0} + (\omega_{Y} + V_{Q})\lambda_{1} - (\omega_{X} + V_{P})\lambda_{2}.$$
(1)

-- . .

Если для характеристики поворота ИСЗ относительно моделируемой системы координат предпочтительнее использовать матрицу направляющих косинусов $[\gamma]$, то в БЦВМ необходимо решать соответствующие уравнения [4], которые в рассматриваемом случае удобно преобразовать к виду:

$$\begin{split} \dot{\gamma}_{11} &= -\omega_{Y}\gamma_{31} + \omega_{Z}\gamma_{21} - V_{Q}\gamma_{13} + V_{R}\gamma_{12}; \\ \dot{\gamma}_{21} &= -\omega_{Z}\gamma_{11} + \omega_{X}\gamma_{31} - V_{Q}\gamma_{23} + V_{R}\gamma_{22}; \\ \dot{\gamma}_{31} &= -\omega_{X}\gamma_{21} + \omega_{Y}\gamma_{11} - V_{Q}\gamma_{33} + V_{R}\gamma_{32}; \\ \dot{\gamma}_{12} &= -\omega_{Y}\gamma_{32} + \omega_{Z}\gamma_{22} + V_{P}\gamma_{13} - V_{R}\gamma_{11}; \\ \dot{\gamma}_{22} &= -\omega_{Z}\gamma_{12} + \omega_{X}\gamma_{32} + V_{P}\gamma_{23} - V_{R}\gamma_{21}; \\ \dot{\gamma}_{32} &= -\omega_{X}\gamma_{22} + \omega_{Y}\gamma_{12} + V_{P}\gamma_{33} - V_{R}\gamma_{31}; \\ \dot{\gamma}_{13} &= -\omega_{Y}\gamma_{33} + \omega_{Z}\gamma_{23} - V_{P}\gamma_{12} + V_{Q}\gamma_{11}; \\ \dot{\gamma}_{23} &= -\omega_{Z}\gamma_{13} + \omega_{X}\gamma_{33} - V_{P}\gamma_{22} + V_{Q}\gamma_{21}; \\ \dot{\gamma}_{33} &= -\omega_{X}\gamma_{23} + \omega_{Y}\gamma_{13} - V_{P}\gamma_{32} + V_{Q}\gamma_{31}. \end{split}$$

В приведенных уравнениях $\omega_X, \omega_Y, \omega_Z$ – проекции абсолютной скорости поворота ИСЗ на оси системы *охуz*. Они могут быть измерены с помощью ДУС, установленного на ИСЗ. Проекции V_P, V_Q, V_R абсолютной угловой скорости \overline{V} моделируемой системы координат *OPQR* на ее оси можно рассматривать как некие управляющие воздействия, с помощью которых предоставляется возможность осуществить пересчет параметров поворота моделируемой системы координат для обеспечения желаемого изменения ее положения в инерциальном пространстве. При $\overline{V} = 0$ положение системы *OPQR* будет оставаться неизменным в инерциальном пространстве.

В общем случае для формирования управляющего воздействия \overline{V} может использоваться информация первичных датчиков положения, установленных на ИСЗ (астроориентатора, ИК-вертикали и др.).

В МГО управляющее воздействие формируется по сигналам магнитометра и расчетного значения вектора индукции МПЗ.

Известно, что использование параметров, характеризующих в данный момент времени только одно направление вектора индукции МПЗ, позволяет определить положение ИСЗ в пространстве с точностью до его поворота вокруг этого направления. Необходимое определение ориентации ИСЗ по трем осям с помощью МПЗ может быть осуществлено только в случае, если вдоль орбиты спутника вектор индукции геомагнитного поля существенно меняет свое положение в инерциальном пространстве. Это представляет возможность, в среднем за какое-то время, получить желаемую оценку углового положения ИСЗ по трем осям.

Поэтому МГО может применяться на ИСЗ с достаточно большим углом наклонения его орбиты к плоскости экватора Земли. Кроме того, высота полета ИСЗ не должна быть значительной, поскольку МПЗ, а вместе с ним и возможность измерения индукции на борту спутника с необходимой точностью, существенно уменьшаются по мере удаления от Земли.

Работа МГО состоит из двух этапов. Вначале используется так называемый двухвекторный алгоритм [5]. Он позволяет достаточно быстро, но с небольшой точностью определить предварительные параметры поворота моделируемой системы координат относительно орбитальной. Для реализации его в МГО осуществляется дифференцирование сигналов магнитометра. На последующем этапе используется одновекторный алгоритм, который сравнительно медленно, но зато с большей точностью обеспечивает пересчет положения моделируемой системы координат с целью совмещения ее с орбитальной системой.

На первом этапе полагается, что управляющее воздействие $\overline{V} = 0$. В этом случае принятые параметры поворота строительной системы координат *охуг* будут характеризовать отклонение ИСЗ относительно неизменного в инерциальном пространстве положения моделируемой системы *OPQR*, соответствующего тому положению ИСЗ, в котором он находился в момент включения МГО.

Пусть \overline{B} – вектор индукции МПЗ. Для характеристики непостоянства его вдоль орбиты спутника введем вектор $\overline{C} = \overline{B} \times d\overline{B}/dt$. Он не зависит от выбора системы координат.

В проекциях на оси орбитальной системы координат *otws* (ось *ow* направлена по бинормали к орбите, ось *os* – по радиус-вектору от центра Земли) рассматриваемый вектор $\overline{C} = \overline{C}_0 = \{C_t, C_w, C_s\}$ можно рассчитать по формулам:

$$C_{t} = \dot{B}_{s}B_{w} - \dot{B}_{w}B_{s} + \omega_{t}(B_{w}^{2} + B_{s}^{2}) - \omega_{w}B_{t}B_{w} - \omega_{s}B_{t}B_{s};$$

$$C_{w} = \dot{B}_{t}B_{s} - \dot{B}_{s}B_{t} - \omega_{t}B_{w}B_{t} + \omega_{w}(B_{t}^{2} + B_{s}^{2}) - \omega_{s}B_{w}B_{s};$$

$$C_{s} = \dot{B}_{w}B_{t} - \dot{B}_{t}B_{w} - \omega_{t}B_{t}B_{s} - \omega_{w}B_{w}B_{s} + \omega_{s}(B_{t}^{2} + B_{w}^{2}),$$

где $\overline{B}_0 = \{B_t, B_w, B_s\}$ – определенный по МЭГП вектор индукции (в проекциях на орбитальную систему координат); $\overline{\omega}_n = \{\omega_t, \omega_w, \omega_s\}$ – вектор абсолютной угловой скорости орбитальной системы координат. Он может быть рассчитан в БЦВМ с той или иной степенью точности по известным навигационным параметрам спутника.

Тот же вектор \overline{C} , но в проекциях на оси моделируемой системы координат $\overline{C} = \overline{C}_m = \{C_P, C_Q, C_R\},\$ вычисляется с помощью более простых выражений, поскольку на первом этапе работы МГО управляющее воздействие $\overline{V} = 0$ и угловая скорость системы *ОРОR* в инерциальном пространстве равна нулю:

$$C_{P} = \dot{B}_{R}B_{Q} - \dot{B}_{Q}B_{R};$$

$$C_{Q} = \dot{B}_{P}B_{R} - \dot{B}_{R}B_{P};$$

$$C_{R} = \dot{B}_{Q}B_{P} - \dot{B}_{P}B_{Q},$$

где $\overline{\mathbf{B}}_m = \{B_P, B_Q, B_R\}$ – оценка вектора индукции МПЗ в проекциях на оси моделируемой системы

OPQR, вычисленная по результатам измерения установленного на борту ИСЗ магнитометра и рассчитываемой в БЦВМ матрицы $[\gamma]$ направляющих косинусов поворота строительной системы координат *охуг* относительно системы *OPQR*.

В МГО приближенная оценка производных координат как вектора \overline{B}_0 , так и \overline{B}_m осуществляется с помощью динамических звеньев второго порядка, передаточная функция которых равна $\Omega^2 P/(P^2 + 2\zeta\Omega P + \Omega^2)$.

После окончания переходных процессов в динамических звеньях может быть осуществлена желаемая оценка положения моделируемой системы *OPQR* относительно орбитальной системы *otws* с помощью двухвекторного алгоритма.

Введем промежуточную систему координат $O\zeta_0\eta_0\xi_0$ так, чтобы взаимно перпендикулярные векторы \overline{B} и \overline{C} были направлены, соответственно, по осям $O\zeta_0$ и $O\eta_0$. Тогда элементами матрицы [δ] поворота $O\zeta_0\eta_0\xi_0$ относительно *otws* будут: $\delta_{11} = b_t$; $\delta_{12} = b_w$; $\delta_{13} = b_s$; $\delta_{21} = e_t$; $\delta_{22} = e_w$; $\delta_{23} = e_s$; $\delta_{31} = (b_w e_s - b_s e_w)$; $\delta_{32} = (b_s e_t - b_t e_s)$; $\delta_{33} = (b_t e_w - b_w e_s)$, где $\overline{b}_0 = \{b_t, b_w, b_s\}$ – орт вектора \overline{B}_0 , а $\overline{e}_0 = \{e_t, e_w, e_s\}$ – орт \overline{C}_0 . Элементы матрицы [β] поворота $O\zeta_0\eta_0\xi_0$ относительно *OPQR* определяются из выражений $\beta_{11} = b_p$; $\beta_{12} = b_Q$; $\beta_{13} = b_R$; $\beta_{21} = e_p$; $\beta_{22} = e_Q$; $\beta_{23} = e_R$; $\beta_{31} = (b_Q e_R - b_R e_Q)$; $\beta_{32} = (b_R e_P - b_P e_R)$; $\beta_{33} = (b_P e_Q - b_Q e_{sP})$, где $\overline{b}_m = \{b_P, b_Q, b_R\}$ – орт вектора \overline{B}_m , а $\overline{e}_m = \{e_P, e_Q, e_R\}$ – орт \overline{C}_m .

Так что искомая матрица [ρ] поворота моделируемой системы *OPQR* относительно орбитальной системы координат *otws* определится произведением [ρ] = [β]⁻¹[δ].

На втором этапе работы МГО решение дифференциальных уравнений (1) или (2) осуществляется с начальных условий, определяемых в соответствии с выражением $[\gamma] = [\gamma]_0 [\rho]_0$, где $[\gamma]_0$ и $[\rho]_0$ – матрицы поворота, определенные на первом этапе работы в момент перехода на второй этап. Очевидно, что в этом случае начальное отклонение моделируемой системы координат относительно орбитальной будет незначительное, поскольку оно определяется лишь погрешностью работы МГО на первом этапе. Как показали расчеты, практические значения углов отклонения *OPQR* от *оtws* не превосходят 10–15° даже в случае, если работа МГО на первом этапе начинается непосредственно сразу после отделения от носителя, когда ИСЗ совершает интенсивное вращение в инерциальном пространстве.

Поэтому при формировании вектора \overline{V} управляющего воздействия на втором этапе можно исходить из того, что углы отклонения моделируемой системы координат от орбитальной являются малыми величинами.

В этом случае для круговой орбиты уравнения (1) или (2) сводятся к системе из трех приближенных уравнений:

$$\dot{\Psi}_{m} - \nu_{O}\gamma_{m} - V_{R} + \omega_{S} + \omega_{R} = 0;$$

$$\dot{\gamma}_{m} + \nu_{O}\Psi_{m} - V_{P} + \omega_{t} + \omega_{P} = 0;$$

$$\dot{\vartheta}_{m} - V_{Q} + \omega_{W} + \omega_{Q} = 0,$$

(3)

где $\dot{\psi}_m$, $\dot{\gamma}_m$, $\dot{\Theta}_m$ — углы рыскания, крена и тангажа, характеризующие отклонение системы *OPQR* относительно орбитальной системы *otws*; v_0 — угловая скорость орбитального движения ИСЗ; ω_p , ω_Q , ω_R проекции на оси моделируемой системы координат погрешностей измерения ДУС вектора $\overline{\omega}$ абсолютной скорости вращения ИСЗ; ω_l , ω_W , ω_S — попрежнему проекции на оси орбитальной системы координат вектора $\overline{\omega}_n$ ее угловой скорости вращения в инерциальном пространстве.

Отметим, что систему (3) можно рассматривать как совокупность уравнений, характеризующих поведение условного объекта регулирования – математической модели положения системы координат *OPQR* относительно орбитальной системы координат управления таким объектом можно воспользоваться фильтром со структурой фильтра Калмана, который в случае малых отклонения ИСЗ от орбитальной системы координат целесообразно дополнить компенсатором постоянных составляющих погрешностей в сигналах ДУС.

В этом случае вектор \bar{V} управляющего воздействия можно определять из выражений:

$$V_{P} = \omega_{t}^{*} - (Z_{3} + Z_{5})\sin\mu - (Z_{4} + Z_{6})\cos\mu;$$

$$V_{R} = \omega_{S}^{*} - (Z_{3} + Z_{5})\cos\mu + (Z_{4} + Z_{6})\sin\mu;$$

$$V_{Q} = \omega_{W}^{*} - (Y_{1} + Y_{2}),$$

где $Z_5 = H_1Z_1 - H_3Z_2$; $Z_6 = H_2Z_1 + H_4Z_2$; $Y_1 = D_2Y$ - параметры регулятора; Z_1, Z_2, Y - параметры моде-

ли условного объекта регулирования, определяемые решением уравнений:

$$\dot{Z}_{1} = 2\nu_{0}^{*}Z_{2} - Z_{5} + H_{5}(U_{\chi} - Z_{1});$$

$$\dot{Z}_{2} = -2\nu_{0}^{*}Z_{1} - Z_{6} + H_{6}(U_{\chi} - Z_{1});$$

$$\dot{Y} = -Y_{1} + D_{1}(U_{9} - Y),$$

где Z_3, Z_4, Y_2 – параметры компенсатора постоянных составляющих сигналов ДУС, определяемые решением уравнений

$$Z_{3} = v_{0}^{*} Z_{4} + H_{7} (U_{\chi} - Z_{1});$$

$$\dot{Z}_{4} = -v_{0}^{*} Z_{3} + H_{8} (U_{\chi} - Z_{1});$$

$$\dot{Y}_{2} = D_{3} (U_{9} - Y).$$

В приведенных уравнениях величины U_{χ} и U_{g} определяются из выражений:

$$U_{\chi} = (B_W - B_Q) / A;$$

$$U_{\vartheta} = -[(B_t - B_P)\sin\mu + (B_S - B_R)\cos\mu] / A.$$

Они являются информационными сигналами и вычисляются в БЦВМ по расчетному вектору индукции $\overline{B}_0 = \{B_t, B_w, B_s\}$ и вектору $\overline{B}_m = \{B_P, B_Q, B_R\}$, полученному в результате проектирования с помощью матрицы $[\gamma]^{-1}$ сигналов магнитометра на оси моделируемой системы координат *OPOR*.

Для определения переменных величин A и μ , кроме вычисления расчетного вектора индукции \overline{B}_0 по МЭГП, необходимо проведение расчетов по определению дипольной составляющей МПЗ в проекциях на оси орбитальной системы координат в виде:

$$B_{td} = B\cos(U^* + \alpha);$$

$$B_{Wd} = B_{WO};$$

$$B_{Sd} = -2B\sin(U^* + \alpha).$$

Здесь переменные B, B_{WO} и α вычисляются с использованием только первых трех коэффициентов МЭГП, а U^* является выполненной на борту оценкой текущего значения аргумента широты спутника на орбите. Заметим, что случай $U^* + \alpha = 0$ соответствует моменту пересечения спутником магнитного экватора Земли на восхо-

дящем участке орбиты. В принятых обозначениях упомянутые переменные определяются из выражений A = 1,5B, $\mu = U^* + \alpha$.

Закон управления содержит одиннадцать постоянных параметров: $H_1 - H_8$ и $D_1 - D_3$.

Если ИСЗ совершает произвольные движения в орбитальной системе координат, то проекции постоянных составляющих погрешностей в сигналах ДУС будут модулироваться движением ИСЗ, что исключает возможность осуществить их компенсацию с помощью предложенного закона управления. В этом случае параметры Z_3 , Z_4 и Y_2 компенсатора постоянных составляющих сигналов ДУС должны быть приравнены нулю.

Приближенная модель работы МГО

Для того, чтобы осуществить первоначальный выбор параметров закона формирования управляющего воздействия, обеспечивающих устойчивость управления и минимизацию погрешностей МГО, необходимо иметь модель, описывающую динамику работы МГО с помощью обыкновенных дифференциальных уравнений с постоянными коэффициентами.

Такая модель может быть получена при следующих упрощающих предположениях. Орбита ИСЗ является круговой. Оценки величин v_0^* , ω_t^* , ω_W^* , ω_S^* , U^{*} , используемых в законе управления, выполнены без погрешностей. Работа МГО должна рассматриваться в так называемом расчетном поле [6]. Полагается, что вектор индукции МПЗ $\overline{B} = \overline{B}'$ имеет постоянный по величине модуль и меняет только свое положение в инерциальном пространстве вдоль орбиты спутника, равномерно перемещаясь по прямому круговому конусу вокруг бинормали ож с угловой скоростью $2v_0$. При этом в орбитальной системе координат вектор \overline{B}' имеет координаты: $B'_t = A\cos v_0 t$; $B_{W}^{'} = bA; \quad B_{S}^{'} = -A \sin v_{0}t$, где $A = 1,5B; \quad b = 2/3 \operatorname{ctg} i_{m};$ В – по-прежнему определяется дипольной частью МПЗ; і_m – наклонение плоскости орбиты к магнитному экватору Земли, отсчет времени t ведется от момента пересечения спутником плоскости магнитного экватора на восходящем участке орбиты.

Положение оси *OQ* моделируемой системы координат *OPQR* рассматривается не в орбитальной системе координат *otws*, а в системе *ot ws*, которая вращается относительно *otws* вокруг бинормали оw с угловой скоростью v_0 вместе с вектором \overline{B}_1 индукции расчетного поля МПЗ так, что его проекции на оси *ot* и *os* определяются в виде $B_t = A$, $B_s = 0$. Положение *OQ* в системе *ot* и *ws* характеризуется двумя углами $\gamma = \gamma_m \sin v_0 t + \psi_m \cos v_0 t$, $\varphi = \gamma_m \cos v_0 t - \psi_m \sin v_0 t$.

При составлении приближенной модели полагается, что расчет в БЦВМ вектора \overline{B}_0 выполнен без погрешностей, а инструментальные погрешности ММ и ДУС являются заданными функциями времени.

С учетом принятых предположений и в случае малых отклонений самого ИСЗ от орбитальной системы координат информационные сигналы можно приближенно представить в виде: $U_9 = 9_m - b\varphi + \delta_9$; $U_{\chi} = \chi + \delta_{\chi}$, где $\delta_9 = (d_X \sin v_0 t + d_Z \cos v_0 t)/A$; $\delta_{\chi} = -d_Y/A$, а d_X, d_Y, d_Z – погрешности сигналов ММ (измерительные оси которого совпадают с осями строительной системы координат *охуд* ИСЗ).

Тогда работу МГО можно описать следующей системой уравнений:

$$\begin{split} -2\nu_{0}\phi + \dot{\chi} + Z_{3} + H_{1}Z_{1} - H_{3}Z_{2} &= \omega_{\chi d}; \\ \dot{\phi} + 2\nu_{0}\chi + Z_{4} + H_{2}Z_{1} + H_{4}Z_{2} &= \omega_{\phi d}; \\ \dot{\theta}_{m} + D_{2}Y + Y_{2} &= -\omega_{Q d}; \\ -H_{5}\chi + \dot{Z}_{1} + (H_{1} + H_{5})Z_{1} - (2\nu_{0} + H_{3})Z_{2} &= H_{5}\delta_{\chi}; \\ -H_{6}\chi + (2\nu_{0} + H_{2} + H_{6})Z_{1} + \dot{Z}_{2} + H_{4}Z_{2} &= H_{6}\delta_{\chi}; \\ -H_{7}\chi + H_{7}Z_{1} + \dot{Z}_{3} - \nu_{0}Z_{4} &= H_{7}\delta_{\chi}; \\ -H_{8}\chi + H_{8}Z_{1} + \nu_{0}Z_{3} + \dot{Z}_{4} &= H_{8}\delta_{\chi}; \\ D_{1}b\phi - D_{1}\vartheta_{m} + \dot{Y} + (D_{1} + D_{2})Y &= D_{1}\delta_{\vartheta}; \\ D_{3}b\phi - D_{3}\vartheta_{m} + D_{3}Y + \dot{Y}_{2} &= D_{3}\delta_{\vartheta}, \end{split}$$

где $\omega_{\chi d} = -(\omega_{Xd} \sin v_0 t + \omega_{Zd} \cos v_0 t);$ $\omega_{\varphi d} = -(\omega_{Xd} \cos v_0 t + \omega_{Zd} \sin v_0 t);$ $\omega_{Qd} = \omega_{Yd}, a \omega_{Xd},$ ω_{Yd}, ω_{Zd} – погрешности сигналов ДУС, измерительные оси которого (так же, как и у ММ) совпадают с осями системы *охуг* ИСЗ.

Определитель системы уравнений имеет 8-й порядок. Одиннадцать параметров управления позволяют обеспечить устойчивость системы и представляют потенциальную возможность свести к минимуму влияние погрешностей ММ и ДУС на точность работы МГО. Система обладает астатизмом по отношению к постоянным составляющим погрешностей сигналов ДУС – ω_{xd} , ω_{yd} , ω_{zd} .

Как уже отмечалось, в случае когда отклонения ИСЗ от орбитальной системы координат не являются малыми величинами, параметры Z_3 , Z_4 , Y_2 компенсатора постоянных составляющих сигналов ДУС должны быть приравнены нулю. При этом для определения величин δ_9 , δ_{χ} , $\omega_{\chi d}$, ω_{Qd} , $\omega_{\phi d}$ (зависящих от погрешностей сигналов ММ и ДУС) необходимо знание параметров движения ИСЗ относительно орбитальной системы координат – матрицы [α] поворота *охуг* относительно *otws*.

Заключение

Полученная приближенная линейная модель работы МГО позволяет с помощью аналитических методов теории автоматического регулирования осуществить первоначальный выбор параметров, минимизирующих влияние гармонических погрешностей измерений индукции МПЗ и угловой скорости вращения ИСЗ на точность определения его углового положения в орбитальной системе координат. Окончательный выбор параметров требует проведения моделирования работы МГО с учетом фактических особенностей характеристик ММ и ДУС. При этом особое внимание должно быть уделено учету влияния магнитопривода (электромагнитов) системы ориентации на показания магнитометра. Оценка точности работы МГО предполагает использование модели магнитного поля Земли [7], учитывающей погрешность представления главного геомагнитного поля по МЭГП и геомагнитные вариации, а также учет как дискретности ввода в БЦВМ МГО поправок на вековые изменения коэффициентов МЭГП, так и погрешности знания текущего положения ИСЗ в географической системе координат.

Литература

1. Воронцов А.В. Оценка инструментальной погрешности магнитогироскопического орбитанта в составе системы ориентации ИСЗ типа «Метеор-М» / А.В. Воронцов, А.В. Горбунов, Б.В. Карбасников [и др.] // Труды НПП ВНИИЭМ. – М., 2006. – Т. 102.

2. Паркинсон У. Введение в геомагнетизм / У. Паркинсон. – М.: Мир, 1986.

3. Мирошник О.М. Проблемы обеспечения живучести систем современных космических аппаратов дистанционного зондирования Земли / О.М. Мирошник // Труды ВНИИЭМ. – М., 1999. – Т.99.

4. Лурье А.И. Аналитическая механика / А.И. Лурье. – М.: ФМ, 1961.

5. Беляев М.Ю. Научные эксперименты на космических кораблях и орбитальных станциях / М.Ю. Беляев. – М.: Машиностроение, 1984.

6. Алексеев К.Б. Управление космическими летательными аппаратами / К.Б. Алексеев, Г.Г. Бебенин – М.: Машиностроение, 1974.

7. Козаков А.В. Магнитогироскопическая система – достойный соперник гравитационной системы ориентации на малых спутниках / А.В. Козаков // Труды НПП ВНИИЭМ. – М., 2001. – Т. 100.

Александр Витальевич Воронцов, зам.гл. конструктора по производству, т.625-32-11. Александр Викторович Горбунов, канд.техн.наук, зам.генерального директора-генерального конструктора, т.623-41-81.

Борис Владимирович Карбасников, начальник отдела, т.623-59-81.

Анатолий Васильевич Козаков, канд.техн.наук, ст. научный сотрудник.

E -mail: vniiem@orc.ru.