ОБЩИЕ ВОПРОСЫ ЭЛЕКТРОМЕХАНИКИ

УДК 621.313.13

ОЦЕНКА ДОЛИ ДИСКРЕТНЫХ СОСТАВЛЯЮЩИХ ВИБРАЦИЙ В ЧАСТОТНОЙ ПОЛОСЕ

Б.И. Зубренков, А.И. Каплин, В.В. Сенькина (ФГУП «НПП ВНИИЭМ»)

Предлагается способ оценки доли составляющих уровней вибраций от дискретных источников в частотной полосе, содержащей дискретные и случайные вибрации.

Ключевые слова: вибрация, шум, третьоктавная полоса частот.

При производстве электрооборудования, для которого нормирование вибрации и шума производится в частотных полосах, и в состав которого входят конструктивные части, генерирующие различные по природе составляющие вибрации и шума, часто возникает необходимость определения принадлежности наиболее интенсивного источника в каждой конкретной полосе частот.

Существует различные способы разделения источников вибрации и шума¹, которые, однако, не дают возможности определения доли вибрационной мощности от разных источников. Кроме того, возможны случаи, когда в полосе частот действует один источник, но возбуждаются как дискретные, так и случайные составляющие. Именно здесь представляет интерес мощностная оценка этих составляющих.

Ниже изложена методика оценки доли дискретных составляющих вибраций в частотной полосе на примере вибраций при третьоктавном анализе.

Выделить долю дискретной составляющей в пределах третьоктавной полосы со среднегеометрической частотой f_{0i} , в которой реализуется дискретная составляющая со среднеквадратичным значением x_h и составляющая случайного характера с постоянной спектральной плотностью, в полосе анализа с разрешением Δf , среднеквадратичное значение которой составляет x_s , можно с помощью следующих соотношений:

- границы *i*-й третьоктавной полосы

$$f_{\min} = f_{0i} / \sqrt[6]{2}$$
; $f_{\max} = f_{0i} \sqrt[6]{2}$;

- ширина полосы

$$\Delta f_3 \cong 0.232 f_{0i}$$
.

Для узкополосного анализа с разрешением по частоте Δf , число составляющих в полосе:

$$N = \frac{\Delta f_3}{\Delta f} = 0.232 \frac{f_{0i}}{\Delta f}.$$

Как правило, в пределах третьоктавной полосы среднеквадратичного спектра содержится дискретная составляющая x_h и, соответственно, N среднеквадратичных составляющих непрерывной части, каждая из которых равна x_{si} .

Общий уровень в полосе Δf_3 составит:

$$x_3 = \sqrt{x_h^2 + \sum_{i}^{N} x_{si}^2} \ .$$

В работе было проведено экспериментальное моделирование и анализ типичных процессов. Сигнал с непрерывным спектром создан генератором случайных сигналов типа 1027. Дискретные составляющие разного уровня воспроизводятся генератором гармонических сигналов типа М 5190. Сигналы смешивались на пассивном делителе напряжений и подавались на анализатор типа 2034. Сначала подавался и измерялся сигнал x_h , а затем подавалась случайная составляющая x_s .

Для случая, когда спектральные составляющие непрерывной части в пределах третьоктавной полосы одинаковы и равны x_{s} , общий уровень

$$x_3 = \sqrt{x_h^2 + Nx_s^2} \ .$$

или, предполагая $x_s = \psi x_h$ и $\psi < 1$, получается

$$x_3 = x_h \sqrt{1 + 0.232 \psi^2 \frac{f_{0i}}{\Delta f}},$$
 (1)

 $^{^{1}}$ Методы проектирования малошумных электрических машин // Вопросы электромеханики. Труды НПП ВНИИЭМ. – М.: ФГУП «НПП ВНИИЭМ», 2006. – Т.103. – 178 с.

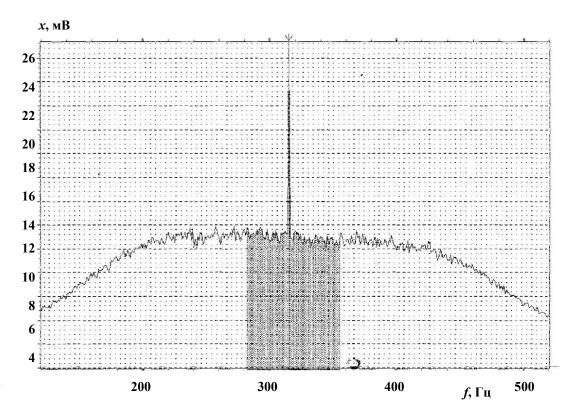


Рис. 1. Спектральный анализ сигнала x_h = 25 мВ; x_s = 11 мВ; x_3 = 96,9 мВ

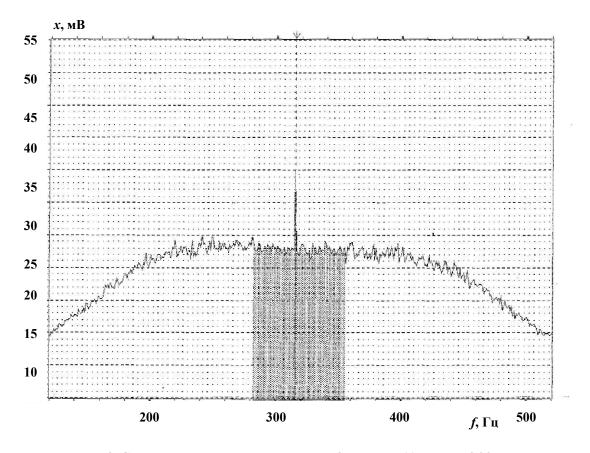


Рис. 2. Спектральный анализ сигнала x_h = 25 мВ; x_s = 11 мВ; x_3 = 96,9 мВ

или в логарифмическом масштабе перепад между общим уровнем в третьоктаве и дискретной составляющей

$$\Delta_{3h} = 10 \lg \left(1 + 0.232 \psi^2 \frac{f_{0i}}{\Delta f} \right), \text{ дБ.}$$
(2)

Результаты измерений в третьоктавной полосе со среднегеометрической частотой 315 Γ ц представлены на рис. 1, 2. Анализируемый частотный диапазон (третьоктавная полоса с граничными частотами 282 – 355 Γ ц) выделена темным цветом. Анализ проводился с разрешением по частоте $\Delta f = 1$ Γ ц.

В таблице и на рис. 3 приведены результаты моделирования Δ_{3h} для $\psi = 0,1$ (20 дБ) и $\psi = 0,316$ (10 дБ) для частот f_{0i} , где наблюдаются дискретные уровни превышения вибраций, возбуждаемых двигателем, с разрешениями $\Delta f = 1$ Гц для 160, 315, 630 Гц и $\Delta f = 2$ Гц для 2000 и 2500 Гц при использовании режимов анализа характерных для главных конфигураций анализатора 2034.

Ψ	Δ_{3h} , д $f E$, для f_{0i} , Γ ц				
	160	315	630	2000	2500
0,1	1,4	2,4	3,9	5,2	5,9
0,316	6,7	9,2	11,9	13,8	14,8

На рис. 1, 2 при указанных величинах x_h , x_s экспериментальные значения Δ_{3h} и значения, рассчитанные с учетом соотношений (1) – (2), отличаются не более чем на 0,2 дБ.

Предполагаемый метод позволяет решать более общие задачи. Так, если в составе агрегата имеется роторная система на подшипниках качения, то идентифицируя по частотам дискретные составляющие от подшипников¹, можно определить долю создаваемых ими вибраций в данной полосе.

При решении задачи выявления преобладания того или иного источника возбуждения высоких уровней вибраций в третьоктавной полосе со среднеквадратичным значением вибрации x_3 и частотой f_0 , на первом этапе проведения эксперимента с помощью узкополосного анализа обнаруживается дискретная составляющая x_{1h} и непрерывная часть спектра со значениями $x_{1s} \div x_{2s}$.

Известно, что непрерывная часть спектра возбуждается одним источником, а дискретная другим, поэтому необходимо дать оценку доли вибрации от каждого из источников, руководствуясь соотношениями (1) и (2).

Вначале определяется значение x_{1h} на частоте, совпадающей с x_{1h} . Это можно сделать путем интерполяции ближайших значений.

Затем вычисляется x_h :

$$x_h = \sqrt{x_{1h}^2 - x_{sh}^2} \ .$$

Далее определяется значение всей непрерывной части в пределах полосы:

$$x_{s0} = \sqrt{\sum_{i=1}^{N} x_{si}^2}$$
; $N = \frac{0.232 f_0}{\Delta f}$.

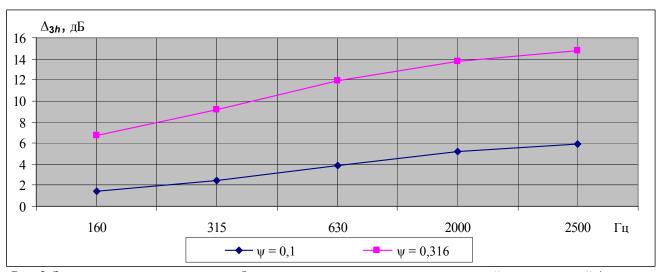


Рис. 3. Зависимость перепада между общим уровнем в третьоктаве и дискретной составляющей Δ_{3h} и значениями ψ в третьоктавных полосах 160, 315, 630, 2000 и 2500 Гц

¹См. сноску на стр. 3

В результате исследований сопоставляются значения величин x_{s0} и x_h в линейном или логарифмическом выражениях.

Такой анализ наиболее корректно выполнять в дискретном диапазоне вибрационного спектра электромеханизма, где возможна идентификация каждой из значимых составляющих. Долю составляющих уровня вибраций от того или иного источника возбуждения в уровне анализируемой треть-

октавной полосы можно рассчитать при более сложном составе спектра, например при нескольких дискретных и непрерывных составляющих спектра.

Предлагаемая методика оценки доли дискретной составляющей позволяет наметить рациональные мероприятия по снижению вибраций от источников различной природы.

Поступила в редакцию 16.01.2009

Борис Иванович Зубренков, канд. техн. наук, начальник сектора, m. 366-21-01, e-mail: dep18@rol.ru. Александр Иванович Каплин, канд. техн. наук, начальник лаборатории, m. 366-27-56, e-mail: dep18@rol.ru. Валентина Владимировна Сенькина, аспирант, мл. науч. сотр., m. 366-21-01, e-mail: well-ka85@mail.ru.