УДК 004.94 : 629.78

ИССЛЕДОВАНИЕ ДИНАМИКИ РАСКРЫВАЮЩИХСЯ ПРОТЯЖЁННЫХ КОНСТРУКЦИЙ

Д.В. Гриневич (ОАО «Корпорация «ВНИИЭМ»)

Приведено исследование динамики протяжённых конструкций КА «Ионосфера» – антенно-фидерных устройств ЛАЭРТ, батареи фотоэлементов, штанги низкочастотного волнового комплекса. Исследование включает моделирование конструкций, определение их динамических характеристик, верифицируемых динамическими испытаниями, моделирование раскрытия элементов, создание единой динамической модели КА «Ионосфера».

Ключевые слова: космический аппарат, математическая модель, компьютерное моделирование, упругие колебания.

При проектировании космических аппаратов (КА) и разработке систем ориентации (СО) возникает необходимость анализа влияния упругих элементов конструкций на динамику КА [1]. Особенно это имеет значение для КА, имеющих протяжённые упругие конструкции, составляющие сложную динамическую систему. К таким сложным системам относится разрабатываемый в ОАО «Корпорация «ВНИИЭМ» новый КА «Ионосфера».

КА «Ионосфера» содержит следующие упругие элементы:

 передающие антенно-фидерные устройства (АФУ) ЛАЭРТ (длиной 15 м) – 4 шт.;

- принимающие АФУ ЛАЭРТ (длиной 7,5 м) - 4 шт.:

- штанга низкочастотного волнового комплекса (HBK);

– фотоэлектрическая батарея (БФ).

Все упругие элементы конструкции являются раскрывающимися, выводятся в сложенном состоянии и принимают рабочую конфигурацию на орбите.

Исследование их конструкции и влияния на точность стабилизации КА было проведено в не-

сколько этапов. Основные этапы исследования приведены на рис. 1.

Первый этап включает в себя компьютерное моделирование упругих элементов КА на основе исходных данных. Строятся конечно-элементные модели раскрытых протяжённых конструкций.

Для подтверждения моделей проводят серию модальных испытаний, заключающихся в возбуждении колебаний и получении динамических параметров системы. Испытания дают возможность определить несколько первых частот и форм собственных колебаний. По ним производится сопоставление динамики расчётных моделей с динамикой изделия. Выявляются особенности конструкций, после чего конечно-элементные модели корректируются.

Приведём основные соотношения, описывающие динамические характеристики математической модели КА.

Уравнение движения в формулировке метода конечных элементов имеет вид:

$$M\ddot{u} + C\dot{u} + Ku = R,\tag{1}$$

Рис. 1. Основные этапы исследования динамики протяжённых конструкций КА «Ионосфера»

где M, C, K – глобальные матрицы масс, демпфирования и жёсткости, соответственно; $R = \vec{R}(t)$ – глобальный вектор нагрузки; \ddot{u}, \dot{u}, u – векторы ускорений, скоростей и перемещений.

Перемещение узлов конечно-элементной модели u может быть аппроксимировано линейной комбинацией векторов собственных форм Ψ_i :

$$u = \Psi q, \tag{2}$$

где Ψ – матрица форм, составленная из столбцов Ψ_j ; *q* – вектор перемещений в главных координатах.

Подставив (2) в (1) и домножив на Ψ^{T} , получим уравнение (1) в виде:

$$\Psi^{T}M\Psi\ddot{q} + \Psi^{T}C\Psi\dot{q} + \Psi^{T}K\Psi q = \Psi^{T}R, \quad (3)$$

где $\Psi^{T}M\Psi = E$ из-за нормировки собственных векторов (E – единичная матрица), а $\Psi^{T}K\Psi = diag\{\omega_{j}^{2}\},$ $\Psi^{T}C\Psi = diag\{2\zeta_{j}\omega_{j}\},$ где ω_{j} – собственная частота *j*-й формы; ζ_{j} – коэффициенты модального демпфирования для *j*-й формы.

Учитывая приведённые соотношения, уравнение (3) можно записать в виде:

$$\ddot{q}_j + 2\zeta_j \omega_j \dot{q}_j + \omega_j^2 q_j = \Psi_j^T R.$$
 (4)

При кинематическом возбуждении вектор нагрузки определяется как $\vec{R}(t) = -M\ddot{u}_b(t)$, где $\ddot{u}_b(t)$ – ускорение основания.

При отсутствии демпфирования уравнение (4) можно представить в виде:

$$\ddot{q}_j + \omega_j^2 q_j = -\gamma_r^k \ddot{u}_b^k(t),$$

где γ_r^k – коэффициент влияния *r*-й формы в *k*-м направлении, они вычисляются по формуле

$$\gamma_r^k = \sum_{i=1}^N M_i \Psi_{ir}^k,$$

где N – количество узлов модели; M_j – сосредоточенная масса в *i*-м узле; Ψ_{ir}^k – элемент матрицы собственных форм, соответствующий *i*-му узлу, *r*-й форме и *k*-му направлению.

В результате получаем набор динамических характеристик – собственные частоты, собственные формы, инерционные коэффициенты влияния, которые полностью описывают КА как упругую конструкцию, т. е. составляют математическую модель КА. Данная модель не зависит от методов и средств дальнейших исследований и может быть использована в любом программном комплексе. Например динамические характеристики используются в уравнениях, описывающих работу СО [2, 3].

Динамические характеристики также позволяют смоделировать упругие колебания элементов в системах кинематического анализа, например, в использованном здесь комплексе Adams. Математическая модель упругого KA передается в Adams в файле специального формата MNF (Modal neutral file). Формирование выходных данных в данном формате позволяют все современные вычислительные комплексы конечно-элементного анализа. Структура файла формата MNF представлена на рис. 2.

Конечно-элементные модели упругих элементов

Файл MNF	
Информация по файлу: • Код версии • Заголовок • Аннотация содержимого • Единицы измерения	Свойства конечно-элементной модели: • Общие свойства: масса, центр масс, тензор инерции • Координаты узлов • Масса в узлах • Инерция в узлах • Граничные узлы элементов
Модальные свойства: • Собственные значения • Обобщённая масса • Обобщённая жёсткость • Обобщённое демпфирование • Матрица перехода к собственным формам • Собственные формы • Напряжённые формы • Напряжённые формы • Деформированные формы • Модальная нагрузка • Прелварительная нагрузка	Свойства Adams: • Интерфейсные узлы • Инвариант I ₁ • • Инвариант I ₉

Рис. 2. Структура файла MNF

конструкции импортируются как суперэлементы, для чего редуцируются по методу Крейга-Бемптона. Пользователь определяет отдельные интерфейсные узлы, которыми тело прикрепляется к остальной системе. К степеням свободы этих узлов u_B не применяется модальная суперпозиция, они заносятся прямо в модальный базис метода Крейга-Бемптона. Степени свободы оставшихся узлов u_I аппроксимируют линейной комбинацией векторов собственных форм Ψ_j аналогично (2) и нормируются.

Отношение между физическими перемещениями, тонами метода Крейга-Бемптона и их модальными координатами выражается следующей формулой [4]:

$$u = \begin{cases} u_B \\ u_I \end{cases} = \begin{bmatrix} E & 0 \\ \Phi_{IC} & \Phi_{IN} \end{bmatrix} \begin{cases} q_C \\ q_N \end{cases},$$

где u_B – граничные степени свободы; u_I – внутренние степени свободы; E, 0 – единичная и нулевая матрицы соответственно; Φ_{IC} – физические перемещения внутренних степеней свободы в статических формах; Φ_{IN} – физические перемещения внутренних степеней свободы в собственных формах; q_C – модальные координаты статических форм; q_N – модальные координаты собственных форм, закреплённых по границам.

Матрицы обобщённой жёсткости и массы получаются через модальную трансформацию. Трансформация матрицы жёсткости:

$$\hat{K} = \Phi^T K \Phi = \begin{bmatrix} I & 0 \\ \Phi_{IC} & \Phi_{IN} \end{bmatrix}^T \begin{bmatrix} K_{BB} & K_{BI} \\ K_{IB} & K_{II} \end{bmatrix} \begin{bmatrix} I & 0 \\ \Phi_{IC} & \Phi_{IN} \end{bmatrix} = \begin{bmatrix} \hat{K}_{CC} & 0 \\ 0 & \hat{K}_{NN} \end{bmatrix}.$$

Трансформация матрицы массы:

$$\hat{M} = \Phi^{T} M \Phi = \begin{bmatrix} I & 0 \\ \Phi_{IC} & \Phi_{IN} \end{bmatrix}^{T} \begin{bmatrix} M_{BB} & M_{BI} \\ M_{IB} & M_{II} \end{bmatrix} \begin{bmatrix} I & 0 \\ \Phi_{IC} & \Phi_{IN} \end{bmatrix} = \begin{bmatrix} \hat{M}_{CC} & \hat{M}_{NC} \\ \hat{M}_{CN} & \hat{M}_{NN} \end{bmatrix}$$

После проведения нормировки собственных векторов получают дифференциальное уравнение движения деформируемого тела. Его получают из уравнений Лагранжа [4, 5]:

$$\begin{cases} \frac{d}{dt} \left(\frac{\partial L}{\partial \xi} \right) - \frac{\partial L}{\partial \xi} + \frac{\partial F}{\partial \xi} + \left[\frac{\partial \Psi}{\partial \xi} \right]^T \lambda - Q = 0; \\ \Psi = 0, \end{cases}$$

где $L = T - \Pi$ – Лагранжиан, определяемый как разность кинетической $T = 1/2\xi^{T}M(\xi)\xi$ и потенциальной энергий $\Pi = \Pi_{g}(\xi) + 1/2\xi^{T}K\xi; \Pi_{g}(\xi)$ – потенциальная гравитационная энергия; F – функция диссипации энергии; Ψ – алгебраические уравнения ограничений; λ – множители Лагранжа для ограничений; Q – обобщённые приложенные силы.

Обобщённые координаты упругого тела представляют собой вектор, состоящий из координат поступательного, вращательного движения и модальных координат:

$$\xi = \begin{cases} x \\ y \\ z \\ \Psi \\ \theta \\ \phi \\ q_i, (i = 1 \dots M) \end{cases} = \begin{cases} x \\ \psi \\ q \end{cases}.$$

В окончательном виде уравнение движения деформируемого тела имеет вид [3]:

$$M\ddot{\xi} + \dot{M}\dot{\xi} - \frac{1}{2} \left[\frac{\partial M}{\partial \xi} \dot{\xi} \right]^T \dot{\xi} + K\xi + f_g + C\dot{\xi} + \left[\frac{\partial \Psi}{\partial \xi} \right]^T \lambda = Q,$$

где $\xi, \dot{\xi}, \ddot{\xi}$ – обобщённые координаты упругого тела и их производные по времени; M – матрица масс упругого тела; \dot{M} – производная по времени матрицы масс упругого тела; $\frac{\partial M}{\partial \xi}$ – частная производная матрицы масс по обобщённым координатам; K – обобщённая матрица жёсткости; f_g – обобщённая гравитационная сила; C – матрица демпфирования.

В итоге программный комплекс Adams на основе импортированных данных позволяет построить модель с включёнными упругими элементами и моделировать её динамику. Это даёт возможность провести моделирование процесса раскрытия протяжённых элементов КА, анализ их конструкций, механизма раскрытия с целью выбора оптимальных параметров.

Упругие элементы располагаются на КА в сложенном виде и после вывода КА на орбиту раскрываются в рабочее положение.

Проводился расчёт раскрытия БФ и штанги НВК. Целью расчёта было определение динамиче-

Рис. 3. Схема сложенной БФ (a) и её модель в Adams (б)

ских параметров процесса раскрытия и подтверждение прочности каркаса БФ и штанги НВК при раскрытии.

БФ КА «Ионосфера» представляет собой одно крыло, состоящее из четырёх створок, шарнирно соединённых между собой. Крыло БФ крепится к валу привода с помощью механизма поворота и поворотной рамы, которая обеспечивает требуемую конфигурацию БФ на этапах транспортирования и выведения КА. На рис. 3, *а* приведена схема БФ, находящейся в транспортном положении. На рис. 3, δ приведена её модель в Adams. Каждая створка БФ и поворотная рама моделировались отдельно в системе конечно-элементного анализа MSC.Nastran/Patran. Створки моделировались стержневыми системами, поворотная рама – пластиной, после чего они импортировались в Adams.

Интерфейсные узлы расположены в местах соединения элементов БФ. Далее в Adams упругие (створки, поворотная рама) и жёсткие (корпус КА, элементы зачековки) элементы соединяются с помощью шарниров и моделируются защёлки, контакты между отдельными элементами. Раскрытие БФ происходит после срабатывания пиросредств под действием пружин кручения в шарнирах. Полученные с помощью модели нагрузки используются для расчёта упругих элементов на прочность в MSC.Nastran/Patran.

На рис. 4 приведена циклограмма процесса раскрытия (0 – 5 с) БФ, наглядно показывающая результаты моделирования.

В ходе расчёта была выявлена возможность соударения корневой створки БФ и корпуса КА. По сделанным замечаниям конструкция БФ была

Рис. 4. Циклограмма процесса раскрытия БФ (0 – 5 с)

доработана (доработаны шарниры поворотной рамы), что решило проблему соударения.

Далее моделировался процесс раскрытия штанги НВК.

Расчётная схема штанги содержит (рис. 5):

 твёрдое тело, соответствующее корпусу КА, для возможного контакта при раскрытии;

колена штанги НВК (корневое, промежуточное и концевое);

- концевые трубки штанги НВК;

 твёрдые тела, соответствующие прикреплённым датчикам;

- рычаги зачековки.

Раскрытие штанги НВК происходит после срабатывания пиросредств и раскрытия рычагов зачековки. Под действием пружин кручения, расположенных в шарнирах, колена и трубки начинают раскрываться.

В ходе расчёта была выявлена возможность соударения датчика на одной из трубок и корпуса КА. На рис. 6 приведена циклограмма процесса раскрытия (0 – 9 с) штанги НВК. По сделанным замечаниям конструкция штанги была доработана. Были добавлены два дополнительных пружинных толкателя корневого и промежуточного колен, что ускорило процесс раскрытия и решило проблему (рис. 5, а). Использование Adams совместно с MATLAB позволяет построить единую динамическую модель КА. Она представляет собой механическую модель КА с подключенной системой управления, которая моделируется в MATLAB [6]. В результате была построена единая динамическая модель КА «Ионосфера», учитывающая управляемость, упругость и изменяемость системы. Она позволила провести верификацию модели КА, созданной для стенда моделирования системы ориентации.

В заключение можно отметить, что использование математических моделей упругих элементов позволяет исследовать динамическое

Рис. 5. Схема сложенной штанги НВК (*a*) и её модель в Adams (*б*)

Рис. 6. Циклограмма процесса раскрытия штанги НВК (0 – 9 с)

поведение элементов в различных задачах.

Математическая модель КА может использоваться и вне исходных пакетов прикладной механики, что расширяет её возможности применения.

Практическим результатом работы являлось обоснование технических решений по конструкции протяжённых элементов КА «Ионосфера» и их корректировка.

Литература

1. Точность стабилизации гибких космических аппаратов и нормирование механических воздействий от внутренних источников возмущения / Е. Е. Малаховский. – М. : Космические исследования, 1997. – Т. 35. – № 5.

2. Аппель П. Теоретическая механика: в 2 т. / П. Аппель М. : Физматгиз, 1960.

3. Модально-физическая модель пространственного углового движения деформируемого космического аппарата и ее свойства. Автоматика и телемеханика / В. М. Глумов, С. Д. Земляков, В. Ю. Рутковский [и др.]. – 1998. – № 12. – С. 181–186.

4. ADAMS. Theoretical Background. MSC.Software Corporation. - 2003.

5. Ahmed A.Shabana. Dynamics of Multibody System, third edition. – Cambridge University Press. – 2005.

6. Новые возможности создания динамической модели управляемого космического аппарата с учётом упругих свойств и изменяемости конструкции / А. Д. Беленький, В. Н. Васильев, Д. В. Гриневич [и др.] // Вопросы электромеханики. Труды ВНИИЭМ. – М. : ОАО «Корпорация «ВНИИЭМ»», 2012. – Т. 127. – С. 21 – 26.

Поступила в редакцию 29.05.2013

Дмитрий Владимирович Гриневич, млад. научн. сотрудник, e-mail: d.v.grinevich@gmail.com, m. (495) 366-33-61.