РАСЧЕТНО-ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД ПОДТВЕРЖДЕНИЯ СЕЙСМОСТОЙКОСТИ ОБОРУДОВАНИЯ АЭС

В настоящее время квалификация оборудования в части сейсмостойкости основывается на анализе исходных параметров заданного землетрясения, модальном анализе несущих конструкций [1-3] и базе данных по экспериментальной отработке вибростойкости комплектующих изделий.

В данной работе предложен расчетно-экспериментальный метод подтверждения сейсмостойкости оборудования АЭС, основанный на конечно-элементном представлении конструкции и использовании экспериментальных данных по свойствам ее элементов и сборок.

На первом этапе на основе анализа конструкторской документации и имеющейся базе данных по характеристикам основных конструктивных элементов (файлы AutoCAD и экспериментальные данные по динамическим свойствам: собственные частоты и параметры демпфирования) в конечно-элементном виде строится подробная математическая модель несущей конструкции, которая адекватно отражает все геометрические, массовые и жесткостные параметры изделия.

Затем проводятся расчеты вибрационных полей во всех наиболее важных узловых точках конструкции при указанных в ТЗ параметрах землетрясения, которые задаются в виде временных зависимостей ускорений (акселерограмм) или в виде обобщенных спектров ответа. Полученные результаты позволяют определить максимальные перегрузки для всех комплектующих изделий.

На заключительном этапе проводится сравнительный анализ расчетных и допустимых значений перегрузок для встроенной аппаратуры (допустимые значения перегрузок либо задаются в сертификате поставляемого блока, либо определяются по данным ис-

пытаний прототипов), который и позволяет сделать окончательный вывод по квалификации оборудования для данной АЭС.

С использованием предложенного расчетно-экспериментального метода получены результаты расчета вибраций шкафа фирмы «Риталл», являющегося типовым представителем базового электрооборудования (ЭО) на заданное максимальное расчетное землетресение (МРЗ).

Экспериментальное определение свойств типового шкафа

Современные несущие конструкции шкафов фирмы «Риталл» существенно отличаются от ранее применявшихся:

- использованием тонкостенного профиля сложной конфигурации, полученного путем многократных сгибов стального листа с перфорацией, вместо обычных уголков;
- широким использование резьбовых соединений несущих элементов вместо сварных и др.

Для достоверного определения свойств несущей конструкции шкафа были проведены динамические испытания основных элементов шкафа и сборок*. В частности определялись собственные частоты для:

- несущих балок каркаса;
- усиливающих распорок;
- стандартных балочных профилей;
- свободного каркаса шкафа;
- штатно закрепленного каркаса шкафа;
- различных вариантов сборок;
- шкафа в сборе.

Анализ полученных экспериментальных данных, который здесь не приводится из-за его большого объема, показал, как и следовало ожидать, значительное отличие от данных, полученных по универсальным конечно-элементным программам (ANSYS, COSMOS-M, СТАДИО) при использовании стандартной библиотеки элементов.

Следовательно, при математическом моделировании современных конструкций шкафов, необходим учет экспериментальных данных, учитывающих специфику конструкций.

^{*} Испытания проводились Б.И.Зубренковым.

Математическое моделирование шкафа

Для расчета вибрационных полей в реальном оборудовании при действии сейсмической нагрузки применяется математическое моделирование конструкций на базе метода конечных элементов (МКЭ).

При формировании модели руководствуются соответствием:

- геометрических размеров конструкции;
- массовых характеристик;
- жесткостных характеристик по данным натурных испытаний.

Конечно-элементная модель шкафа (рис.1) содержит несущие элементы каркаса, для которых заданы жесткостные и массовые характеристики, определенные расчетно-экспериментальным путем, и электронные блоки (для последних задаются масса, центр масс, моменты инерции).

Модель состоит из балочных и оболочечных конечных элементов. Всего модель содержит 526 узлов и 548 элементов.

На рис.2 приведены расчетные формы колебаний конструкции для двух первых собственных частот 7 и 13 Γ ц.

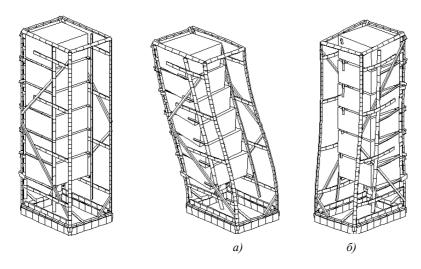


Рис. 1. Конечно-элементная модель шкафа (в сборе)

Рис. 2. Низшие формы колебаний шкафа: а) $f_1 = 7\Gamma \mu$, б) $f_2 = 13\Gamma \mu$

Полученные в результате расчетно-экспериментального моделирования собственные частоты шкафа в сборе соответствуют данным, полученным при прямых испытаниях на стенде.

Методика расчета

Нагрузка на оборудование при сейсмическом воздействии может быть задана в виде:

- зависимости сил или ускорений от времени (акселерограмм реальных землетрясений);
 - спектров ответа или гармонического спектра ускорений.

Для определения отклика системы на заданный вид нагрузки для линейных задач в настоящее время разработаны эффективные методы, которые успешно применяются в отечественной и зарубежной практике [1-3]. Большинство этих методов основаны на разложении решения в ряд по формам собственных колебаний.

Собственные частоты и формы колебаний динамической системы определяются как собственные значения и собственные векторы системы уравнений свободных колебаний конструкции:

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{K}\mathbf{u} = 0$$
,

где K - матрица жесткости системы; M - матрица масс системы; $\ddot{\mathbf{u}}, \mathbf{u}$ - векторы ускорений и перемещений.

Нахождение собственных значений ω_j^2 и собственных векторов ψ_j сводится к решению системы линейных алгебраических уравнений вида:

$$\left(\mathbf{K} - \omega_j^2 \mathbf{M}\right) \mathbf{\psi}_j = 0,$$

где $\mathbf{\psi}_j$ - j-й собственный вектор системы (форма колебаний), соответствующий собственной частоте $\boldsymbol{\omega}_j$, j =1, 2,...N, где N – порядок матриц \mathbf{K} и \mathbf{M} .

Поскольку собственные вектора определяются с точностью до постоянного множителя, для их определения добавляются условия нормировки. Удобно использовать формы колебаний, ортонормированные по матрице инерции системы \mathbf{M} . Условия нормировки:

$$\mathbf{\psi}_{j}^{T}\mathbf{M}\mathbf{\psi}_{k} = 0, \quad j \neq k;$$

$$\mathbf{\psi}_{i}^{T}\mathbf{M}\mathbf{\psi}_{k} = 1, \quad j = k.$$
(1)

В терминах метода конечных элементов уравнение движения конструкции имеет вид

$$\mathbf{M}\ddot{\mathbf{u}} + \mathbf{C}\dot{\mathbf{u}} + \mathbf{K}\mathbf{u} = \mathbf{R} \,, \tag{2}$$

где \mathbf{M} , \mathbf{C} и \mathbf{K} – соответственно, глобальные матрицы масс, демпфирования и жесткости; $\mathbf{R} = \mathbf{R}(t)$ - глобальный вектор нагрузки; $\ddot{\mathbf{u}}$, $\dot{\mathbf{u}}$, $\dot{\mathbf{u}}$ - векторы ускорений, скоростей и перемещений.

Вводится преобразование координат

$$\mathbf{u} = \mathbf{\Psi}\mathbf{q} \,, \tag{3}$$

где Ψ - матрица форм, составленная из столбцов ψ_j ; \mathbf{q} - вектор перемещений в главных координатах.

Подставляя (3) в (2) и умножая слева на Ψ^T , получим

$$\mathbf{\Psi}^{T}\mathbf{M}\mathbf{\Psi}\ddot{\mathbf{q}} + \mathbf{\Psi}^{T}\mathbf{C}\mathbf{\Psi}\dot{\mathbf{q}} + \mathbf{\Psi}^{T}\mathbf{K}\mathbf{\Psi}\mathbf{q} = \mathbf{\Psi}^{T}\mathbf{R}. \quad (4)$$

В главных координатах матрицы жесткости и масс имеют диагональный вид. Учитывая условия нормировки (1)

$$\mathbf{\Psi}^{T}\mathbf{M}\mathbf{\Psi} = \mathbf{E};$$

$$\mathbf{\Psi}^{T}\mathbf{K}\mathbf{\Psi} = diag\left\{\omega_{j}^{2}\right\},$$
(5)

где Е - единичная матрица.

Предполагается, что матрица демпфирования ${f C}$ пропорциональна матрице жесткости, тогда преобразование ${f \Psi}^T {f C} {f \Psi}$ также приводит матрицу к диагональному виду

$$\mathbf{\Psi}^{T}\mathbf{C}\mathbf{\Psi} = diag\left\{2\zeta_{j}\omega_{j}\right\},\tag{6}$$

где ζ_j - коэффициент модального демпфирования для j-й формы.

С учетом (5) и (6) система уравнений (4) может быть записана в виде

$$\ddot{q}_j + 2\zeta_j \omega_j \dot{q}_j + \omega_j^2 q_j = \mathbf{\psi}_j^T \mathbf{R}. \tag{7}$$

При нулевых начальных условиях $q_j(0) = 0$, $\dot{q}_j(0) = 0$ решение (7) может быть представлено интегралом Дюамеля:

$$q_{j}(t) = \frac{1}{\beta_{j}} \int_{0}^{t} e^{-\zeta_{j}(t-\tau)} \sin \beta_{j}(t-\tau) \mathbf{\psi}_{j}^{T} \mathbf{R}(\tau) d\tau, \quad (8)$$

где $\beta_j^2 = \omega_j^2 - \zeta_j^2$.

Если нагрузка задана как функция силы от времени $\mathbf{F}(t)$, то решение определяется по формуле (8) при $\mathbf{R}(t) = \mathbf{F}(t)$.

При решении задачи расчета на заданное сейсмическое воздействие в виде реальной акселерограммы, вектор нагрузки определяется как $\mathbf{R}(t) = -\mathbf{Ma}(t)$, где $\mathbf{a}(t)$ - ускорение основания.

Перемещения в физических координатах находятся из соотношения (3). После этого по определенным перемещениям определяются внутренние силовые факторы и напряжения.

Если задаются спектры режимов испытаний, т.е. нагрузка ${f R}$ меняется по гармоническому закону в виде

$$\mathbf{R}(t) = \tilde{\mathbf{R}}e^{i\omega t}$$

где $\tilde{\mathbf{R}}$ - вектор амплитуд нагрузки, то решение уравнений (7) можно представить в виде

$$q_i = \tilde{q}_i e^{i\omega t}$$
.

Тогда уравнение (7) примет вид:

$$-\omega^{2}\tilde{q}_{j}+2i\zeta_{j}\omega\omega_{j}\tilde{q}_{j}+\omega_{j}^{2}\tilde{q}_{j}=\mathbf{\psi}_{j}^{T}\tilde{\mathbf{R}}.$$

Каждое из полученных уравнений имеет решение:

$$\tilde{q}_{j} = \frac{\mathbf{\psi}_{j}^{T} \tilde{\mathbf{R}}}{\omega_{j}^{2} \left(1 - \left(\frac{\omega}{\omega_{j}}\right)^{2} + 2i\zeta_{j} \frac{\omega}{\omega_{j}}\right)}.$$

Как и в случае задания реальной акселерограммы, перемещения в физических координатах находятся из соотношения (3), и затем определяются внутренние силовые факторы и напряжения.

Если землетрясение задается спектрами ответа, т.е. кинематические нагрузки, действующие на конструкцию, даны в виде спектров максимальных значений ускорений, может быть использован линейно-спектральный метод.

При отсутствии демпфирования систему (7) можно переписать в виле

$$\ddot{q}_r^k + \omega_r^2 q_r^k = -\gamma_r^k \mathbf{a}(t), \tag{9}$$

где q_r^k - нормальная координата для r-й формы в k-м направлении; γ_r^k - коэффициент влияния r-й формы в k-м направлении; $\mathbf{a}(t)$ - ускорение основания.

Коэффициент влияния $\gamma_r^{\ k}$ вычисляется как

$$\gamma_r^{\ k} = \sum_{i=1}^N M_i \psi_{ir}^{\ k} ,$$

где N - количество узлов в модели; M_i - сосредоточенная масса в i-м узле; ψ_{ir}^{k} - элемент матрицы собственных форм, соответствующий i-му узлу, r-й форме и k-му направлению.

Решение уравнений (9) можно записать в виде

$$\ddot{q}_r^k = \gamma_r^k A_r^k,$$

$$\dot{q}_r^k = \frac{1}{\omega_r} \gamma_r^k A_r^k,$$

$$q_r^k = \frac{1}{\omega_r^2} \gamma_r^k A_r^k,$$

где $A_r^{\ k}$ - спектр максимальных значений ускорений, связанный со спектром перемещений $D_r^{\ k}$: $A_r^{\ k} = \omega_r^{\ 2} D_r^{\ k}$.

После этого по определенным перемещениям каждого конечного элемента определяются внутренние силовые факторы и напряжения для каждой формы колебаний и каждого направления возлействия.

Результирующие значения компонент векторов перемещений, скоростей, ускорений, силовых факторов, реакций в опорах, напряжений получаются вычислением квадратного корня из суммы квадратов соответствующих величин. В общем случае компоненты вектора \mathbf{x} : \mathbf{x}_i , i=1,2,...,N оцениваются по формуле

$$x_{i \text{ max}} \le \sqrt{\sum_{r=1}^{n} \sum_{k=1}^{3} \left(\psi_{ir}^{\ k} \gamma_{r}^{\ k} D_{r}^{\ k} \right)^{2}},$$
 (10)

где \mathcal{X}_i - вычисляемое значение перемещения (ускорения, силы, напряжения и т.д.) в i-м узле или элементе; $D_r^{\ k}$ - входной спектр для r-й формы в k-м направлении; $\psi_{ir}^{\ k}$ - модальное перемещение (скорость, ускорение, реакция) в i-м узле или сила (напряжение) в i-м элементе в k-м направлении.

Так как отклики конструкции на различных частотах не достигают одновременно максимума, формула (10) не определяет реальные величины перемещений и т.д., а имеет смысл оценки сверху.

В данной работе, в качестве примера, рассматривалось сейсмическое воздействие для АЭС «Тяньвань» на отметке 23,6 м при MP3 8 баллов.

Спектральные параметры этого воздействия и расчетносгенерированная акселерограмма приведены в работе [4].

Расчет виброускорений

Расчет ускорений линейно-спектральным методом

Для построенной конечно-элементной модели шкафа был выполнен расчет максимальных ускорений по высоте шкафа по линейно-спектральной теории.

Полученные в результате расчета значения максимальных ускорений в различных точках по высоте шкафа представлены на рис.3.

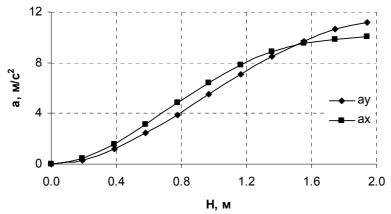


Рис. 3. Распределение ускорений по высоте шкафа

Расчет ускорений по заданным акселерограммам

На базе конечно-элементной модели шкафа ПСУ2М был выполнен динамический расчет для случая кинематического возбуждения основания по заданной временной функции. В качестве таких функций использовались полученные расчетные акселерограммы.

Полученные в результате расчета зависимости ускорений в верхней точке шкафа в двух направлениях представлены на рис.4, 5.

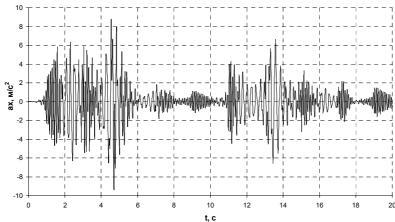


Рис. 4. Расчетное ускорение в верхней точке шкафа по направлению Х

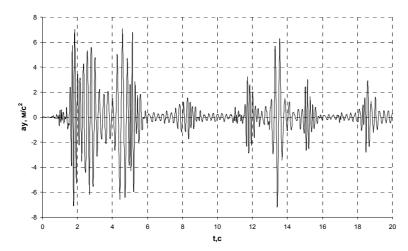


Рис. 5. Расчетное ускорение в верхней точке шкафа по направлению У

Сравнение максимальных ускорений на рис. 4, 5 с максимальными ускорениями, полученными по спектральному методу (см. рис.3), показывает, что последний дает завышенную оценку в соответствии с его теоретическим обоснованием [1].

Выводы

Разработанный расчетно-экспериментальный метод позволяет создавать математические модели оборудования, адекватно отражающие его динамические характеристики и позволяющие получить достоверные данные по распределению виброускорений в конструкции при сейсмических воздействиях, задаваемых как в спектральном, так и временном виде. Это дает возможность провести сравнительный анализ расчетных и допустимых значений перегрузок для встроенной аппаратуры и сделать окончательный вывод по квалификации оборудования для данной АЭС.

ЛИТЕРАТУРА

- 1. Бирбрайер А.Н. /Расчет конструкций на сейсмостойкость // СПб.: Наука. 1998.
- 2. Основы теории сейсмостойкости сооружений: Учебное пособие /Амосов А.А., Синицын С.Б.// Изд-во АСВ. 2001.

- 3. Standard Seismic Analysis of Safety-Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety-Related Nuclear Structures, Sept. 1986.
- 4. Определение режима испытаний на сейсмостойкость оборудования для АЭС на основе заданных спектров /Горшков А.И., Канунникова Е.А., Блинников Д.Н. //См. наст. том.