ТЕСТИРОВАНИЕ РАБОТОСПОСОБНОСТИ СМАЗОЧНЫХ МАТЕРИАЛОВ ДЛЯ ИЗДЕЛИЙ КОСМИЧЕСКОЙ ТЕХНИКИ

В приводах и редукторах электромеханических устройств космической техники широко использовались пластичные смазки ВНИИНП-274 и ВНИИНП-271. В связи с отсутствием компонентов, из которых они изготавливались, их промышленный выпуск в последнее время практически прекращён. Отсюда возникла проблема не только поиска замены этим смазкам, но и обеспечение инструментальной возможности показать без проведения прямых долговременных ресурсных испытаний идентичность работоспособности (нагрузочной способности) рекомендуемой для замены смазки, путём её прямого сравнения с используемыми ранее. Применение с этой целью стандартных квалификационных методов оценки смазочных материалов не дает оснований для обоснования работоспособности смазок, да и не всегда приемлемо из-за большого расхода дефицитного смазочного материала на проведение испытаний.

В связи с этим весьма перспективным является применение с этой целью компьютеризированной тестовой системы SRV-3 фирмы Optimol (Германия), работа которой основывается на применении специальных компьютерных технологий испытаний и анализа результатов тестирования смазок¹. Принцип действия системы основан на имитации контактных нагрузок, действующих в реальных условиях работы смазочного материала. Система позволяет реализовать в возвратно-поступательном движении контакт контртел в точке и по линии, контакт торцевой поверхности кольца по плоскости и контакт торца цилиндра по плоскости. При установке вращающегося модуля — все вышеперечисленные виды контактов по вращающейся поверхности. Нагружающий блок позволяет задавать частоту перемещения образца по контртелу, амплитуду перемещения, нагрузку, действующую в контакте, температуру в зоне трения и продолжительность проведения теста, включая постоянное или

¹ General principles for the tribological testing of lubricants using a linear oscillation test machine. Ref. No. DIN 51834 –1, 1987.

ступенчатое регулирование, а также регулирование с возрастанием или убыванием величины одного из нагружающих параметров.

Система тестирования SRV-3 соответствует ряду международных норм:

- 1. DIN 51834. Смазочные материалы /СМ/. Часть 1: Трибологические испытания на возвратно-поступательных испытательных приборах (ВПИП). Часть 2: Определение трения и величин износа для смазочных масел. Часть 3: Трибологические исследования материалов во взаимодействии с СМ.
- 2. DIN E65593. Аэрокосмическая продукция. Испытания на виброизнос сухих плёночных СМ.
- 3. DIN E62136. Смазочные масла для деталей машин. Часть 1: масла на минеральной основе минимальные требования ASTM D5706 к проверке EP-свойств смазок по ASTM D5707 при смазывании вращением: по тестам на трение и износ: DIN 50324. Проверка на трение и износ.

ASTM G 99-90. Стандартный тест для исследования износа на устройстве штифт – диск.

4. DIN ISO 7148-1. Проверка трибологических свойств смазочных материалов подшипников скольжения. Часть 1: Метод штифт / диск DIN ISO 7148-2, проверка трибологических свойств материалов.

Система тестирования SRV-3 одобрена СЕ по электромагнитной совместимости (89/336EWG) и была предварительно тестирована по стандартам EN 50081-2 и EN 50082-2.

Экспериментальная оценка эффективности системы SRV-3 была произведена нами на возвратно-поступательном модуле путём испытания работоспособности обезличенных образцов, маркированных цифрами от 1 до 6, 0,5%-ной ОТК-суспензии в масле И-20 по сравнению с чистым маслом И-20 и между собой. ОТК-суспензии были выбраны в качестве экспериментального материала в связи с тем, что работоспособность каждого выбранного образца была достоверно известна, что было необходимым условием для итогового контроля результатов, полученных с помощью системы SRV-3, а испытания суспензий к тому же являются более тяжёлыми условиями эксперимента, чем испытания однородных смазок. Предварительные исследования показали, что сравнительная оценка работоспособности образцов ОТК-суспензии с образцом чистого масла И-20 не может быть корректно произведена с использованием только стандартных программных тестов SRV-3 для моторных и прочих масел. Достоверную оценку при сравнительных испытаниях образцов оказалось можно получить только по степени срабатываемости как базового масла, так и тестируемых образцов. Под степенью срабатываемости здесь понимается время до наступления экстремального повышения

коэффициента трения в трущейся паре при заданной нагрузке, температуре, частоте и амплитуде относительного перемещения опытных образцов. Был разработан и запрограммирован специализированный тест, позволяющий оценивать заданные образцы суспензии и базовое масло по степени срабатываемости в точечном контакте — пары трения: шар по плоскости. Методика выработки теста включала:

- предварительное исследование базового масла на его несущую способность, включающее фазу приработки под нагрузкой 50 Н и работу под нагрузкой 100 Н с последующим ступенчатым повышением нагрузки по 100 Н за единицу времени до экстремального повышения коэффициента трения. Параметры испытаний подбирались экспериментально (частота, амплитуда, температура). Исследования проводились как с шарами диаметром 10 мм, так и с шарами диаметром 17,5 мм;
- исследования базового масла на степень срабатываемости включали фазу приработки под нагрузкой 50 Н в заданное время и последующую работу под постоянной нагрузкой. Параметры испытаний подбирались также экспериментально (частота, амплитуда, температура). Для получения достоверного результата каждый тест повторялся минимум 3 раза.

В результате была установлена оптимальная величина прилагаемой к индентору нагрузки для определения оптимального времени срабатываемости в приемлемом для эксперимента временном интервале. Всего проведено 4 цикла испытаний с изменяемой нагрузкой.

По итогам испытаний был выработан тест для базового масла и опытных композиций по степени их срабатываемости: номинал образца — шар 10 мм, амплитуда перемещения 1500 мкм, температура 90°С, частота смещения 50 Гц, режим нагружения - изменяемый в период теста от 50 Н (в течение 1мин) до 300 Н плавно по 25 Н в минуту.

Далее были испытаны 6 образцов 0,5%-ной ОТК-суспензии. Каждый образец подвергся восьми идентичным трибоиспытаниям (всего 48 испытаний). Отбор капельных проб для внесения в зону трения нагружающего устройства производился из однородной, не имеющей видимого осадка, взвеси ОТК-состава в масле И-20. Оптимальный режим нагружения подбирался эмпирически. В экспериментах использовались образцы (шары и диски) производства фирмы «Optimol», изготовленные в соответствии с производственными допусками DIN/ASTM. Шар полирован DIN 51834, материал 100CR6. Диск 24х7,9 закален, полирован с двух сторон DIN 51834, материал 100CR6, шероховатость 0,45-0,65 Rz. Образцы проверя-

лись на видимые повреждения или следы коррозии и каждый раз очищались в ультразвуковой ванне в соответствии с рекомендуемым фирмой циклом очистки.

Основными контролируемыми параметрами испытаний являлись: изменение коэффициента трения от параметров тестового испытания; изменение коэффициента трения с течением времени; износ поверхности трения за время проведения теста (определялась величина износа поверхности диска).

От величины коэффициента трения зависят такие параметры, как потери на трение, а следовательно, общий КПД сопряжения, изнашивание материалов, а следовательно, их ресурс, характеристики старения самого смазочного материала, проявляющиеся в потере его смазывающих свойств частично или полностью. Изменение коэффициента трения с течением времени может наглядно характеризовать степень срабатываемости смазочного материала в целом или его присадок в частности.

При измерении износа была проведена проверка - является ли величина износа, измеряемая системой SRV-3, величиной износа опытного диска или в эту величину входит и значение износа контртела. Указания на этот счёт в документации, сопровождающей систему SRV-3, отсутствовали. Для разрешения этого вопроса нами были проведены расчётно-экспериментальные оценки величин ширин износа. Расчётные значения ширин износа вычислялись через значения глубин износа, снятых с графиков системы SRV-3. Экспериментально ширины определялись с помощью измерительного микроскопа. Результаты проверки на примере композиции 5 сведены в табл. 1. Несущая способность базового масла и композиций оценивалась по нормальным контактным напряжениям в соответствии с формулой

$$\sigma_{\kappa} = 0.388 \sqrt[3]{\frac{P_0 E^2}{r^2}},$$

где P_0 - усилие нормального нагружения, задаваемого в тесте, H; E - модуль упругости для образцов фирмы «Optimol» (21000 H/мм²); r-радиус шара, мм.

Средняя скорость перемещения в контакте (м/с) вычислялась

$$V_{cp} = \frac{2fA}{10^6},$$

где A – амплитуда перемещения, мкм; f - частота, Γ ц.

Путь трения $S_{\mathit{mp}} = V_{\mathit{cp}} \tau \, ,$ где τ - время, мин.

В первом приближении поперечный профиль следа износа оценивался как сегмент с окружностью радиуса R шара (контртела). Ширина следа износа b оценивалась как

$$b=2\sqrt{h(2R-h)},$$

где h –глубина следа износа, снятая с графиков системы SRV-3. Процент ошибки определения ширины износа

Таблица 1

Номер	Износ,	Расчётная	Ширина	Число	Процент
изме-	снятый с	ширина	износа,	делений на	ошибки
рения	графиков	износа	измеренная	шкале	определе-
	системы	b, mm	микро-	микро-	ния
	SRV-3, MKM		скопом, мм	скопа	ширины
					Δb
1	0,025	0,999	1,02	40	2
2	0,035	1,18	1,18	46	0
3	0,027	1,04	1,05	41	1
4	0,028	1,06	1,07	42	1
5	0,030	1,09	1,13	44	3,5
6	0,032	1,13	1,13	44	0
7	0,025	0,999	1,02	40	2
8	0,038	1,23	1,28	50	4

Как видно из табл.1 значения ширин, измеренные и рассчитанные через глубину износа, снятую с графиков SRV-3, отличаются на 1-3,5 %.

Таким образом, можно утверждать, что величины износов на графиках SRV-3 соответствуют износам только опытных дисков.

Результаты тестовых испытаний представлялись в виде многочисленных компьютерных обработок данных (типа представленных на рис. 1), получаемых по шести параметрам.

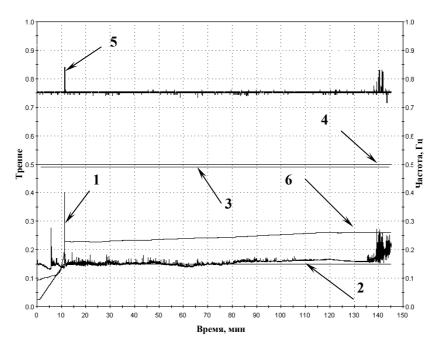


Рис.1. Параметры, регистрируемые системой SRV-3: 1-коэффициент трения; 2-нагрузка; 3-амплитуда; 4-частота, 5-температура; 6-износ

На рис.2 представлен график износа (в увеличенном масштабе) за период испытания.

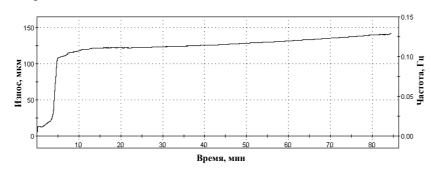


Рис. 2. Процесс износа диска

Незначительный разброс в значениях работоспособности для каждой композиции (значения не приводятся) объясняется, прежде всего, затруднениями в контроле количества частиц порошка ОТК-суспензии в объёме, попадаемых в зону трения. На разброс значений работоспособности влияет и величина частиц в суспензии, так как значительные по размеру частицы могут и не попадать в зону трения при точечном контакте.

Величины времени срабатывания в каждом эксперименте являются в известной мере случайными величинами, т.е. зависят от многих факторов, включая ошибки оператора. В таких случаях основной трудностью при обработке полученных данных обычно является установление закона распределения этих данных для того, чтобы их можно было корректно сравнивать друг с другом. При обработке полученных нами данных в связи с вынужденной малой выборкой значений времени срабатывания для каждой композиции была проведена проверка на однородность полученных результатов. При этом не рассматривалось распределение вероятности однородности. Необходимо было проверить, является ли распределение результатов в каждом эксперименте неизменным. Полагая, что наши многопараметрические функции распределения результатов в каждом эксперименте являются непрерывными, можно допустить, что распределение результатов измерения в каждом рассматриваемом случае является неизменным.

Имея результаты независимых между собой экспериментов x_1 ; x_2 ; x_n , а также y_1 ; y_2 y_n , можно проверить последовательно все серии экспериментов, обозначив их распределения $F_1(x)$ и $F_2(x)$. Выясним, имеет ли место равенство $F_1(x) = F_2(x)$. Построив последовательно разности z_1 ; z_2 и т. д для всех экспериментов, где $z_1 = x_1 - y_1$, а $z_2 = x_2 - y_2$ и т.д., в силу независимости величин x_i и y_i мы должны убедиться, что каждая из разностей с вероятностью 0,5 может принимать положительное значение и с вероятностью 0,5 отрицательное значение. Если число положительных разностей близко к n/2, то $F_1(x) = F_2(x)$, если имеет место большое число положительных или отрицательных разностей, то $F_1(x) = F_2(x)$. Оказалось, что из 15 расчётных сочетаний для всех шести исследованных композиций только одно сочетание не удовлетворяет принятому критерию (расчёты в настоящей статье не приводятся).

Таким образом, для вычисления среднего времени срабатываемости смазочного материала для всех проведённых экспериментов мы можем воспользоваться по принятой гипотезе среднеарифметическими значениями величин, зафиксированных в каждом эксперименте, как наиболее вероятной оценкой непрерывности функции распределения результатов (табл. 2).

Номер тестирования	Композиция	Время срабатываемости, мин
1	Масло И20	Σ 63,75
2	Композиция 1	Σ 118,25
3	Композиция 2	Σ 124,87
4	Композиция 3	Σ 111,75
5	Композиция 4	Σ 158,25
6	Композиция 5	Σ 135,75
7	Композиция 6	Σ 141,88

На рис. 3 представлена типичная картина зоны трения после окончания очередного теста, а на рис. 4 след износа на диске.

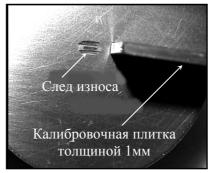


Рис. 3. Зона трения после проведения теста

Рис. 4. След износа на диске

В итоге по результатам обработки данных проведённых экспериментов можно сделать следующие выводы:

- работоспособность каждой из шести композиций ОТКсуспензий превышает работоспособность масла И20 в два раза и более;
- работоспособность исследованных композиций ОТКсуспензий располагается в следующем порядке (по мере убывания работоспособности): 4 - 6 - 5 - 2 - 1 - 3;
- композиция 4 имеет по работоспособности абсолютно лучший результат.

Расшифровка работоспособности обезличенно испытанных композиций дала следующую последовательность (по мере

убывания работоспособности): композиция 4 - офит зелёный, величина частиц в суспензии 1-5 мкм; композиция 6 - хлорит, величина частиц в суспензии 5-40 мкм; композиция 5 - офит тёмнозелёный, величина частиц в суспензии 5-40 мкм; композиция 2 - офит светло-зелёный, величина частиц в суспензии 5-40 мкм; композиция 1 - офит белый, величина частиц в суспензии 5-40 мкм; композиция 3 - офит зелёный, величина частиц в суспензии 5-40 мкм.

Таким образом результаты анализа сравнительной работоспособности опытных композиций ОТК-суспензий с помощью тестовой системы SRV-3 дали 100%-ное совпадение с исходными данными по их истинной работоспособности.

Выводы

Результаты проведенной работы подтверждают, что компьютеризированная тестовая система SRV-3 может быть эффективно использована в качестве инструмента для сравнительной оценки ресурсных показателей пластичных смазок. Это позволит в ряде случаев избежать проведения долговременных прямых ресурсных испытаний смазочных материалов в составе изделий.