МЕТОД РАЗДЕЛЕНИЯ МАГНИТНЫХ И ПОДШИПНИКОВЫХ ВИБРАЦИЙ В ДВУХПОЛЮСНОМ АСИНХРОННОМ ДВИГАТЕЛЕ

Б.И. Зубренков, Д.В. Смуров (ФГУП «НПП ВНИИЭМ»)

Предложен метод разделения магнитных и механических вибраций, связанный с анализом огибающих модулей измеряемых сигналов. Выделение компоненты вибраций, определяемых механическим источником на двойной частоте питания, является динамическим признаком качества сборки двигателя.

Ключевые слова: вибрации, модуль, двойная частота сети.

Характерной особенностью двухполюсных асинхронных двигателей является повышенная вибрация на двойной частоте $2f_{\rm c}$ питающей сети. Эта частота близка к двойной частоте вращения $2f_{\rm l}$, и в режиме холостого хода разделить их спектральным методом достаточно сложно вследствие крайне малых значений скольжения.

Необходимость разделения этих составляющих с целью диагностики качества сборки является актуальной задачей, помимо получения информации о величинах скольжения.

Для решения поставленной задачи целесообразно применить метод, связанный с анализом временного изменения модуля сигнала в частотной полосе центральной частоты $2f_{\rm c}$ и шириной полос, исключающих другие значимые составляющие спектра. Ширина полосы может быть примерно $0.1f_{\rm c}$.

Результирующая вибрация в пределах этой полосы

$$x(t) = x_{\text{M}} \cos(2\pi 2 f_{\text{c}} t) + x_{\text{H}} \cos(2\pi 2 f_{1}),$$

где $x_{\rm M}$ и $x_{\rm II}$ — магнитные и подшипниковые (механические) амплитудные значения вибраций соответственно; значения частот $f_{\rm C}$ и $f_{\rm I}$ близки.

Простые преобразования приводят x(t) к виду:

$$x(t) = r\sin(2\pi 2f_1 + \phi),$$

где
$$r = \sqrt{x_{\text{M}}^2 + x_{\text{H}}^2 + 2x_{\text{M}}x_{\text{H}}\cos\left[2\pi 2(f_{\text{c}} - f_{\text{l}})\right]}$$

Таким образом, максимуму амплитуды r соответствуют $(x_{\rm M}+x_{\rm II})$, а минимуму $(x_{\rm M}-x_{\rm II})$. Частота биения $2(f_{\rm C}-f_{\rm I})$ может быть найдена экспериментально путем анализа изменения модуля результирующего процесса x(t).

Период биений

$$T = 1/2(f_{c} - f_{1}). \tag{1}$$

Очевидно, что временной интервал между минимальным и максимальным значениями модуля x(t) равен полупериоду биений.

По соотношению (1) скольжение S можно представить в виде

$$S = 1/2Tf_a$$
.

Уровни от электромагнитных и механических возбуждений можно найти из простых соотношений:

$$x_{\text{max}} = x_{\text{M}} + x_{\text{II}}; \quad x_{\text{min}} = x_{\text{M}} - x_{\text{II}},$$

где x_{max} и x_{min} — максимальный и минимальный уровни модуля x.

Таким образом, разделение электромагнитных и механических компонент вибрационного сигнала в полосе, включающей $2f_1$ и $2f_c$, можно произвести, анализируя его временное развитие.

Непосредственный анализ осциллограмм представляет определенные технические трудности, поэтому предпочтителен анализ модулей (огибающих) временных процессов.

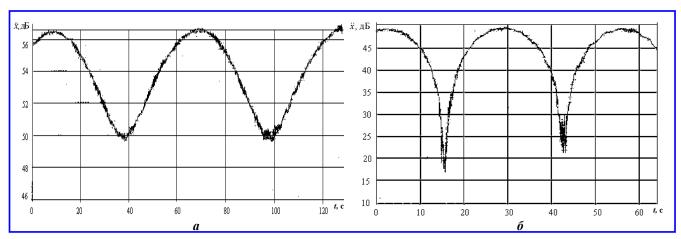
Процедура измерения модулей сигналов базируется на преобразование Гильберта [1], которое позволяет получить аналитическую функцию

$$Z(t) = y(t) + i \stackrel{\approx}{y}(t), \tag{2}$$

где y(t) — функция, описывающая временной сигнал; j — мнимая единица; y(t) — преобразование Гильберта анализируемого процесса y(t), которое является его сверткой с функцией $1/\pi t$:

$$\tilde{y}(t) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y(t)}{t - \tau} d\tau.$$

Аналитическая функция позволяет определить модуль сигнала x(t)


$$Modx(t) = [x^2(t) + x^2(t)]^{1/2}$$
.

Современные средства измерения, предназначенные для анализа вибрационных сигналов, широко используют алгоритм преобразования Гильберта, поэтому получение огибающих этих или иных процессов не представляет никаких аппаратурных трудностей.

На рисунке в качестве примера приведены характерные для двухполюсного двигателя изменения модуля вибрационного сигнала вблизи $2f_1 \div 2f_c$ со средней частотой $100 \, \Gamma$ ц при напряжениях $380 \, \text{и} \, 220 \, \text{B}$.

Очевидно, что минимумы и максимумы модулей будут соответствовать соотношению (2).

Результаты расчета $x_{\text{м}}$, $x_{\text{п}}$ и S приведены в таблице.

Изменение модулей составляющей на частоте 100 Γ ц при напряжении: a-380 B; $\delta-220$ B

Характеристика	Напряжение питания	
	380 B	220 B
х _{тах} , дБ	56	50
$x_{ m max}$, д $\overline{ m B}$ $x_{ m max}$, мм/ c^2	189	95
$x_{ m min}$, дБ $x_{ m min}$, мм/ c^2	50	25
x_{\min} , MM/ c^2	95	5,3
<i>х</i> _м , дБ	53,5	44,5
$x_{\scriptscriptstyle M},дБ$ $x_{\scriptscriptstyle M},мM/c^2$	142	50,2
хп, дБ	44	43,5
x_{Π} , дБ x_{Π} , мм/ c^2	47	44,9
T, c	61	27
S, %	0,0164	0,037

Можно видеть, что рассчитанные значения x_{Π} для обоих напряжений практически не отличаются, в то время как перепад уровней $x_{\text{м}}$ составляет 9 дБ, что близко к расчетной величине 9,6 дБ, что соответствует изменению электромагнитных сил пропорционально квадрату отношения напряжений [2].

Следует отметить, что не всегда $x_{\rm п}$ при номинальном и повышенном напряжениях близки во всех точках измерения. Это связано с тем, что помимо основной магнитной составляющей силы могут быть и другие силы, связанные с магнитным тяжением ротора. В этом случае разброс уровней по различным точкам измерений может быть значительным и составлять порядка 50%.

Величина скольжения является необходимым параметром при анализе зубцовых гармоник вибраций асинхронных двигателей [2].

При сопоставлении вибрационных спектров на номинальном и пониженном напряжениях, учет скольжения является обязательным для идентификации магнитных составляющих этого рода.

Выделение компоненты вибраций, определяемых механическим источником на двойной частоте питания, является динамическим признаком качества сборки двигателя.

Литература

1. Бендат Д., Пирсол А. Прикладной анализ случайных данных / Д. Бендат, А. Пирсол. – М.: Мир, 1989. – 540 с.: ил. 2. Вопросы электромеханики. Методы проектирования малошумных электрических машин. Труды НПП ВНИИЭМ. – М.: ФГУП «НПП ВНИИЭМ», 2006. – Т. 103. – 178 с.

Поступила в редакцию 16.11.2010