ОПРЕДЕЛЕНИЕ ОТНОСИТЕЛЬНЫХ РАЗМЕРОВ УСТРОЙСТВА КОНТРОЛЯ И ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ КОМПОНЕНТОВ ЭЛЕКТРОМЕХАНИЧЕСКОГО ОБОРУДОВАНИЯ НА БАЗЕ ТЕМ-КАМЕРЫ

В.И. Щербаков (ОАО «Корпорация «ВНИИЭМ»)

На основе анализа зависимости основных электромагнитных параметров ТЕМ-камеры (волнового сопротивления, ёмкости, верхней граничной частоты, КСВН) от размеров поперечного и продольного сечений предложена методика проектирования несимметричной ТЕМ-камеры в относительных единицах.

Ключевые слова: ТЕМ-камера, волновое сопротивление, коэффициент стоячей волны, моды высших порядков, многомодовый режим, резонансная длина, коаксиальный кабель.

Обеспечение электромагнитной совместимости (ЭМС) систем, приобретает всё большее значение и сформировалось в самостоятельное научнотехническое направление со своими методами прогноза, исследования и конструирования.

Значимость проблемы определяется не только экспоненциальным ростом количества самих систем и их многообразием и сложностью. Как ни парадоксально, это связано с проявляющейся её недооценкой некоторыми специалистами, отвечающими за штатное функционирование электромеханического оборудования: разработчиков, конструкторов, сотрудников служб эксплуатации и управления.

Зачастую обеспечением ЭМС начинают вплотную заниматься после выявления несовместимости. Однако всё более ясной становится неправомерность разделения во времени разработки радиоэлектронного или электромеханического устройства от квалифицированного решения вопросов по его совместимости с другими техническими средствами. Серьёзное отношение к ЭМС, своевременный учёт требований к ЭМС на этапах разработки и эксплуатации оборудования, по сути, следует отнести к профессиональной характеристике инженера. Необходимо чётко представлять, что наиболее эффективные меры по обеспечению совместимости могут быть приняты на стадии разработки. Чем позже начинаются такие работы, тем они, как правило, менее эффективны и более дорогостоящие [1].

Целью настоящей работы является разработка методики проектирования несимметричной TEM-камеры как средства измерения непреднамеренного излучения в относительных единицах с помощью модифицированных формул, применяющихся для проектирования симметричной камеры.

Стандартная ТЕМ-камера представляет собой отрезок прямоугольной коаксиальной линии, в ко-

торой в рабочем диапазоне частот распространяется поперечная электромагнитная волна. Её суженные участки на обоих концах являются переходами, согласующими отрезок линии со стандартными 50-омными коаксиальными разъёмами. Внешний вид симметричной камеры с помещённым в неё испытуемым оборудованием (ИО) показан на рис. 1.

Достоинства ТЕМ-камеры:

 обратимость, т. е. использование для измерений, как помехоустойчивости, так и помехоэмиссии;

 малые габариты и возможность при проектировании учесть, например, ширину дверного проёма;

 крайне низкая стоимость в сравнении с БЭК и простота изготовления;

– широкий диапазон напряжённостей измеряемых

Рис. 1. ТЕМ-камера: 1 – внешний проводник; 2 – центральный проводник; 3 – диэлектрическая державка; 4 – испытуемое оборудование; 5 – диэлектрическая подставка; 6 – входные разъёмы; 7 – крышка; 8 – коаксиальный разъём

и создаваемых полей (от нескольких мкВ/м до нескольких сотен В/м);

 отсутствие каких-либо специальных требований к помещениям, в которых эксплуатируется камера;

 пригодность для широкополосных измерений, в том числе и для измерений в режиме качания частоты.

На рис. 2 приведены размеры несимметричной камеры в поперечном и продольном сечении, которые необходимо определить в соответствии с ТЗ.

Основные параметры, характеризующие ТЕМ-камеру, применительно к измерениям на помехоэмиссию и помехоустойчивость:

 волновое сопротивление и ёмкость прямоугольной части;

– рабочий диапазон частот;

2

 равномерность распределения поля внутри рабочей зоны;

- размер рабочей зоны.

Волновое сопротивление и ёмкость прямоугольной части

Волновое сопротивление можно определить, сделав несложные преобразования выражений, приведённых в [2], по формуле:

$$Z_0 = (\eta_0 \varepsilon_0) / C_0, \tag{1}$$

Рис. 2. Поперечное и продольное сечения несимметричной ТЕМ-камеры

где η_0 – волновое сопротивление свободного пространства; C_0 – погонная ёмкость ТЕМ-камеры; ε_0 – диэлектрическая проницаемость вакуума.

Ёмкость камеры можно найти из формулы, приведённой в [2], модифицировав её для несимметричной камеры:

$$C_{0} = 2\varepsilon_{0}w/b_{1} + \varepsilon_{0}(4/\pi)\ln(1 + \operatorname{cth}((\pi g)/(2b_{1}))) + 2\varepsilon_{0}w/b_{2} + \varepsilon_{0}(4/\pi)\ln(1 + \operatorname{cth}((\pi g)/(2b_{2}))) - \Delta C,$$
(2)

где b_1 , b_2 , w, g – конструктивные параметры поперечного сечения камеры, показанные на рис. 2; $2\varepsilon_0 w/b_1$ – ёмкость плоского конденсатора, образованного центральным проводником и нижней горизонтальной стенкой камеры; $2\varepsilon_0 w/b_2$ – ёмкость плоского конденсатора, образованного центральным проводником и верхней горизонтальной стенкой камеры; $\varepsilon_0(4/\pi)ln(1 + cth((\pi g)/(2b_1)) + \varepsilon_0(4/\pi)ln(1 +$ $+ cth((\pi g)/(2b_2))$ – краевые ёмкости между ребром центрального проводника и вертикальными боковыми стенками; ΔC – поправка, учитывающая взаимодействие между рёбрами. Для несимметричной камеры ΔC можно найти из модифицированных уравнений [2]:

$$(\Delta C/\varepsilon_{0}) = (1/\pi) \ln\{[(1+\sqrt{k})/(1+\sqrt{\lambda_{1}})]^{2} \times [(1+k)/(1+\lambda_{1})]\} + (1/\pi) \ln\{[(1+\sqrt{k})/(3)/(1+\sqrt{\lambda_{2}})]^{2}[(1+k)/(1+\lambda_{2})]\},$$
(3)

где k = 1 для рассматриваемого случая, и

$$\lambda_1^2 \approx 1 - e^{-(2\pi w)/b_1};$$

 $\lambda_2^2 \approx 1 - e^{-(2\pi w)/b_2}.$
(4)

Расчёт в соответствии с другой более распространённой методикой на основе определения волнового сопротивления, приведённой во многих источниках, например, в [3], имеет ограниченное применение, так как касается только симметричной TEM-камеры ($b_1 = b_2$).

Рабочий диапазон частот

ТЕМ-мода не имеет нижней граничной частоты, что позволяет использовать камеру для любых низких частот. Ограничение здесь может быть связано лишь с эффективностью экранирования камеры по магнитному полю.

Верхняя граничная частота определяется появлением высшей моды наименьшего порядка. В работе рассматривается несимметричная камера, поэтому следует отметить, что её КСВН хуже, чем у симметричной, т. е. в несимметричной камере существуют резонансные моды, которые не встречаются в симметричной [4].

На частотные характеристики камеры так же влияет длина суживающихся частей. Автор не располагает необходимой информацией о характере влияния, поэтому камера была изготовлена исходя из рекомендаций, приведенных в [5]. Суммарная длина суживающихся частей равна длине прямоугольной части камеры, т. е.:

$$L = 2h. \tag{5}$$

Для камеры конечной длины соответствующую граничную частоту можно найти из [3]:

$$f_p = [f_c^2 + (c/2d)^2]^{0.5}, \text{ M}\Gamma\text{II}, \tag{6}$$

где f_c – соответствующая первой граничной моде частота, мГц; c – скорость света в вакууме, м/с; d – резонансная длина камеры, м.

За резонансную длину в первом приближении можно принять [6] сумму длины прямоугольной части и две трети от суммарной длины суживающихся частей:

$$d = L + (2/3)2h.$$
(7)

Частота, соответствующая первой граничной моде находится из [3]:

$$f_c = (75/a) [1 + (2a2b)/(\pi b_1 b_2 ln(8a/\pi g))]^{0.5}, \quad (8)$$

где $2b = b_1 + b_2$.

Из (6) следует, что верхняя рабочая частота камеры в многомодовом режиме может превышать граничную частоту. Ответ на вопрос, насколько возможное превышение, зависит от допустимой погрешности. Считается, что ТЕМ-камеру можно использовать в том случае, если КСВН меньше двух [7]. Этот критерий будем использовать для определения верхней граничной частоты рабочего диапазона. Для расширения рабочего диапазона частот ТЕМ-камеры рекомендуется использовать поглощающие материалы [8]. Как показано в [3], для несимметричной камеры схожих с рассматриваемой размеров искажения амплитуды вертикальной составляющей электрического поля в диапазоне частот от частоты первой граничной моды до первого резонанса в соответствии с выбранным критерием можно свести к минимуму (не более одного децибела) с использованием поглощающих материалов.

Делаем вывод, что применяя поглощающие материалы, камеру можно использовать на частотах несколько выше резонансной частоты (6) с внесением относительно незначительной погрешности.

Распределение поля внутри рабочей зоны

Аналитическое выражение для распределения поля внутри пустой камеры по поперечному сечению в режиме ТЕМ-волны можно получить из якобиевых эллиптических функций или экспериментально. Исходя из результатов расчётов и измерений, приведённых в [2], можно сделать вывод, что теоретически полученные кривые могут значительно отличаться от кривых, полученных экспериментально. В [5] показано, что при КСВН меньше двух распределение поля внутри рабочей зоны на различных частотах отличается незначительно. А при КСВН больше двух наблюдается существенное отличие коэффициента калибровки по электрическому полю от того, что было получено в рабочем диапазоне частот. Результаты измерения распределения поля в поперечном сечении спроектированной камеры приведены в [10]. Данные, полученные в результате эксперимента необходимы для определения погрешности при фиксированных размерах рабочей зоны или для определения рабочей зоны при фиксированной погрешности.

Размер рабочей зоны

Под рабочей зоной понимается некий объём рабочего отсека, внутри которого погрешность измерения не превышает заданной величины. Это с одной стороны. С другой – повороты ИО в вертикальных плоскостях при испытаниях на восприимчивость на значительные углы могут уменьшить частоту первого резонанса в несколько раз, при этом оператор, проводящий эксперимент, будет считать, что измерения проводятся в штатном режиме. Методика, изложенная в [9], позволяет избежать подобных ситуаций, а результаты определения размера рабочей зоны с учётом габаритов ИО приведены в [10].

Рассмотрим последовательность определения размеров камеры.

1. Выбираем камеру несимметричного типа. Такой выбор обусловлен тем, что при одинаковой частоте первого резонанса, размер рабочей зоны будет больше, чем у симметричной камеры.

2. Выбираем относительные размеры поперечного сечения (см. рис. 2):

$$2a = b_1;$$

 $b_1 = 2b_2.$

Выбор делается, исходя из предполагаемых размеров рабочей зоны, в данном случае, исходя из размеров дверного проёма в помещении, где предполагалась установка изделия. Кроме того, учитывались относительные размеры несимметричной камеры аналогичных размеров, описанной в [3].

3. Определяем относительную длину прямоугольной части камеры (см. рис. 2) по формуле [3]:

$$L\approx 2b_1+b_2.$$

4. Рассчитываем погонную ёмкость камеры, соответствующую волновому сопротивлению $Z_0 = 50$ Ом по формуле (1).

5. Определяем относительный размер ширины камеры и ширины центрального проводника:

$$k = a/w$$
,

приравнивая ёмкость, рассчитанную в п. 4 к ёмкости, рассчитанной по формулам (2) – (4). Отметим, что g = a - w.

6. Определяем относительную длину суживающихся частей камеры по формуле (5).

В результате определили относительные размеры ТЕМ-камеры: 2a – ширину поперечного сечения камеры; b_1 – высоту рабочего отсека; b_2 – высоту верхнего отсека; 2w – ширину центрального проводника; g – зазор между центральным проводником и боковыми стенками; L – длину прямоугольной части; h – длину суживающихся частей.

Далее для расчёта необходимо задаться какимнибудь абсолютным размером, например, размером дверного проёма:

2*a* = 0,73 м.

Хотелось бы отметить, что указанный размер может выбираться, исходя и из других соображений, например: размеров рабочей зоны; равномерности распределения поля в рабочей зоне; мод высшего порядка.

Примечание.

При определении относительного размера ширины камеры и центрального проводника (п. 5) необходимо учитывать, что $w \approx 0.8a$ для камер, схожих относительных размеров с рассматриваемой.

7. Частота первого резонанса.

Как показывает практика и [3], частота первого резонанса (в соответствии с выбранным критерием КСВН < 2 и предполагаемым использованием поглощающих материалов) для камер схожих относительных размеров получается несколько выше, чем частота, рассчитанная по (6) – (8) при d = L. Превышение составляет от 6 до 14 %. Таким образом, приходим к выводу, что частота первого резонанса будет не меньше, чем резонансная частота, рассчитанная по (6) – (8), где за резонансную длину принимаем длину прямоугольной части. Такой вывод делается исходя из предположения, что поглощающие материалы будут использованы.

Расчёт параметров ТЕМ-камеры в относительных единицах, на взгляд автора, делает методику более универсальной, т. е., пригодной для проектирования ТЕМ-камер в соответствии с различными, порой взаимоисключающими, требованиями ТЗ.

Литература

1. Уайт Дональд Р. Ж. Электромагнитная совместимость радиоэлектронных средств и непреднамеренные помехи. Вып. 2 : пер. англ. / Дональд Р. Ж. Уайт; под ред. А. И. Сапгира – М. : Сов. Радио, 1978. – 272 с. : ил.

2. Tippet, J. C.; Chang, D. C. Radiation characteristics of dipole sources located inside a rectangular, coaxial transmission line. Nat. Bur. Stand. (U.S.) Int. Rep. 75-829; 1976 January.

3. Crawford M.L., Workman J.L. Using a TEM Cell for EMC Measurements of Electronic Equipment. Nat. Bur. Stand. (US) Tech. Note. 1013; 1979 April.

4. Tippet J.C., Chang D.C. Higher order modes in rectangular coaxial line with infinitely thin inner conductor. Nat. Bur. Stand. (US) Int. Rep. 78-873; 1978 March.

5. Stavros Ioannis Mpoukis. Design Construction and Evaluation of a TEM Transmission Cell for FieldProbe Calibration. Naval Postgraduate School, Monterey, California 93940; 1979 December.

6. Wilson, Perry F., Ma M.T. Simple approximate expression for high order modes and resonances in TEM cell. IEEE Trans. Electromag. Compat., EMC 28 (3) 341-359; 1978 August

7. Crawford M. L. Generation of standard EM field using TEM transmission line / M. L. Crawford. – IEEE Trans. Electromag. Compat., EMC 16 (no .4). – P. 189 – 195. – 1974.

8. Expanding the bandwidth of TEM cell for EMC measurements / M. L. Crawford, J. L. Workman, C. L. Thomas. – IEEE Trans. Electromag. Compat., EMC 20 (4) 368-375; 1978 August.

9. Щербаков В. И., Шаронов Н. К. Методика измерения излучений от объекта, помещенного в ТЕМ-камеру, с поворотом на фиксированный угол / В. И. Щербаков, Н. К. Шаронов // Тем. сб. научн. тр. «Диагностика параметров электромагнитного поля». – М. : МАИ, 1994.

10. Щербаков В. И. Определения равномерности распределения поля внутри рабочей зоны устройства контроля и определения параметров электромагнитного излучения компонентов электромеханического оборудования на базе ТЕМ-камеры / В. И. Щербаков // Вопросы электромеханики. Труды ВНИИЭМ. – М. : ОАО «Корпорация «ВНИИЭМ», 2014. – Т. 138. – № 1. – С. 15 – 20.

Поступила в редакцию 16.12.2013

Вадим Иванович Щербаков, инженер, т. (495) 366-26-11, e-mail:vscherv@mail.ru.