КОСМИЧЕСКАЯ ЭЛЕКТРОМЕХАНИКА. КОСМИЧЕСКИЕ АППАРАТЫ. ИССЛЕДОВАНИЕ ОКОЛОЗЕМНОГО КОСМИЧЕСКОГО ПРОСТРАНСТВА

УДК 551.510.535

МАГНИТНЫЙ ЭФФЕКТ КРУПНОМАСШТАБНЫХ ИСТОЧНИКОВ СЕЙСМОГЕННОГО ТОКА НА ПОВЕРХНОСТИ ЗЕМЛИ ПО ДАННЫМ ИЗМЕРЕНИЙ СЕЙСМОГЕННОГО КВАЗИСТАТИЧЕСКОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ

•••••

В. В. Хегай, А. В. Карелин

 Π редставлены расчеты горизонтального распределения азимутальной компоненты индукции магнитного поля (B_{ϕ}) на поверхности Земли, обусловленной вертикальным электрическим током крупномасштабных сейсмических источников. Аксиально-симметричная электрическая структура этих источников получается в результате аналитической аппроксимации ряда измерений отрицательных аномалий вертикальной компоненты квазистатического электрического поля (ΔE_z) сейсмогенной природы в приземном слое атмосферы, проявлявшихся за сутки/десятки суток до подземного толчка в зоне подготовки соответствующего землетрясения. Получено, что азимутальная компонента B_{ϕ} , порожденная текущим вверх током, направлена по часовой стрелке, если смотреть вверх вдоль вертикальной электрической оси источника. При этом максимальная величина B_{ϕ}^{max} составит ~4 пТл для источника, связанного с эемлетрясением магнитудой M = 4,7 и будет находиться в диапазоне ~30 ÷ 37 пТл для землетрясения с M = 6,0, что в ~7,5 ÷ 9 раз больше. Ключевые слова: сейсмогенное квазистатическое электрическое поле, крупномасштабные источники, магнитный эффект сейсмогенных источников тока.

.....

1. Введение

Данные наблюдений вертикальной компоненты квазистатического электрического поля (E_z) в приземном слое атмосферы показывают, что перед землетрясениями (в области их подготовки на поверхности Земли) систематически наблюдаются отрицательные аномалии сейсмогенной природы в условиях «хорошей погоды» (отсутствие осадков и грозовой активности), появляющиеся в период от нескольких часов до десятков дней перед толчком, которые длятся несколько часов, а их максимальная абсолютная величина лежит в диапазоне ~ 0,1 ÷ 1,0 кВ/м [1 – 3]. При этом в пределах зоны подготовки землетрясения на поверхности Земли имеется тенденция увеличения абсолютной величины аномалии сейсмогенного поля по мере приближения от ее периферии к эпицентру [3].

Генезис проявления в атмосфере Земли сейсмогенных аномалий квазистатического электрического поля, предшествующих землетрясениям и обусловленных процессами подготовки землетрясений в области их очагов внутри Земли, не рассматривается в настоящей работе. Все возможные предвестники землетрясений, в том числе и аномалии в поведении электрических полей в приземном слое атмосферы, обсуждаются в монографии [4], а рассмотрение возможных физических механизмов генерации сейсмогенных электрических аномалий в твердой Земле перед землетрясениями с соответствующими их проявлениями в атмосфере приземного слоя проведено в монографиях [5, 6]. Целью настоящего исследования является моделирование пространственных распределений вертикальной компоненты сейсмогенного квазистатического электрического поля (E_z) в приземном слое атмосферы (появляющегося перед землетрясениями в области их подготовки) по данным измерений в [3] и простейшая количественная оценка соответствующего магнитного эффекта электрического тока, обусловленного такими крупномасштабными сейсмическими источниками, на поверхности Земли.

2. Аналитическая аппроксимация сейсмогенного квазистатического электрического поля (ΔE_z) в приземном слое атмосферы по данным измерений

В работе [3] подведены итоги более чем двадцатилетних систематических наблюдений отрицательных аномалий вертикальной компоненты квазистатического электрического поля (ΔE_z) сейсмогенной природы в приземном слое атмосферы, проявлявшихся за сутки/десятки суток до подземного толчка в зоне подготовки соответствующего землетрясения.

Радиус зоны подготовки землетрясения на поверхности Земли (R_0), внутри которой проявляются аномалии различных геофизических параметров (наклоны земной поверхности, уровень подземных вод, кажущееся сопротивление, деформации, скорости сейсмических волн, электротеллурическое поле, квазистатическое электрическое поле в приземном слое атмосферы) перед землетрясением с различным временем упреждения толчка, измеряется относительно положения его эпицентра на поверхности Земли и зависит от магнитуды землетрясения (M). Минимальный радиус зоны подготовки землетрясения был теоретически оценен в работе И. П. Добровольского с соавторами [7], согласно которой (R_D – радиус Добровольского)

$$R_D = 10^{0,43M},\tag{1}$$

при этом R_D выражается в км. С другой стороны, согласно работе [3], результаты измерений которой далее используются при моделировании сейсмогенных аномалий электрического поля на поверхности Земли, предшествующих землетрясениям, соответствующий характерный радиус зоны (R_H) эмпирически определен как

$$R_H \cong \exp(M),\tag{2}$$

где M – также величина магнитуды землетрясения, и R_H тоже выражается в км. Нетрудно заметить, что $R_D = 10^{0.43M} \cong e^{0.99M} \cong \exp(M)$, так что в дальнейшем будем полагать, что радиус зоны подготовки землетрясения на поверхности Земли задается выражением (2) и далее везде $R_0 = \exp(M)$.

Зададим теперь цилиндрическую систему координат (r, φ , z), начало которой поместим на горизонтальной плоскости, расположенной на высоте z = 0 км всегда в эпицентре рассматриваемого землетрясения. Ось z направим вертикально вверх. Будем полагать, что распределение вертикальной компоненты электростатического поля E_z , обусловленного локализованным источником, на плоскости z = 0 км является азимутально-симметричным и не зависит от φ .

Анализ обширных экспериментальных наблюдений, выполненных в [3], показывает, что в ряде случаев сейсмогенные аномалии вертикальной компоненты квазистатического электрического поля (ΔE_z) в приземном слое атмосферы регистрируются одновременно на двух станциях наблюдения, расположенных на различных расстояниях от будущего эпицентра соответствующего землетрясения. Так, из рассмотрения [3, с. 250] видно, что сейсмогенные аномалии вертикальной компоненты квазистатического электрического поля (ΔE_z) в приземном слое атмосферы наблюдались одновременно на двух станциях Ваіјіаtuan и Baodi (No. 4, M = 4,1), 5 (No. 3, M = 4,7) и 15 (No. 7, M = 4,3) за 4 дня до землетрясения соответствующей магнитуды. Эпицентральные расстояния до станций наблюдения (r) лежали в диапазоне от 28 до 95 км, а абсолютные величины аномальных значений E_z составляли от 344 до 721 В/м. Отрицательный знак аномалий соответствует направлению вектора напряженности квазистатического сейсмогенного электрического поля «вверх» от поверхности Земли.

На рис. 1 представлены аналитические аппроксимации (сплошные линии) абсолютных величин этих данных (кривые No. 3, No. 4 и No. 7) по измерениям аномальных значений ΔE_z (точки) в зависимости от эпицентрального расстояния *r* согласно соотношению

$$\Delta E_z(r, z = 0) = E_0 \exp\{-([1 + (r/R_0)^2]^{1/2} - 1)/$$

$$/(R_E/R_0)\}/[1 + (r/R_0)^2]^{1/2}, \qquad (3)$$

где E_0 и R_0 – соответственно максимальное значение ΔE_z и радиус зоны подготовки землетрясения на поверхности Земли, а R_E определяет масштаб уменьшения поля по мере удаления от эпицентра. В случае, когда имеются одновременные данные измерений ΔE_z в двух пространственноразнесенных точках и R_0 задано, из соотношения (3) можно определить E_0 и R_E .

Рис. 1. Аналитические аппроксимации абсолютных величин сейсмогенных аномалий ΔE_z в приземном слое атмосферы в зависимости от эпицентрального расстояния r (сплошные линии) экспериментальных данных (точки) работы [3, с. 250] в соответствии с формулой (3)

Из рисунка видно, что аналитическое выражение (3) позволяет хорошо описывать измерения ΔE_z , выполненные одновременно в двух разнесенных точках, при этом однозначно определяются величины E_0 и R_E . Для представленных кривых описывающие их параметры имеют следующие значения:

No. 3
$$(M=4,7) \Rightarrow [E_0 = 890 \text{ B/m}; R_0 = 110 \text{ km}; R_E = 66 \text{ km}];$$

No. 4 $(M=4,1) \Rightarrow [E_0 = 1265 \text{ B/m}; R_0 = 60 \text{ km}; R_E = 40 \text{ km}];$
No. 7 $(M=4,3) \Rightarrow [E_0 = 802 \text{ B/m}; R_0 = 74 \text{ km}; R_E = 130 \text{ km}].$

Эти аппроксимации дают количественное представление о возможных соотношениях между размерами радиуса зоны подготовки землетрясения на поверхности Земли R_0 и характерным масштабом изменения поля R_E , а также о предполагаемой аномальной величине ΔE_z в эпицентре назревающего землетрясения на поверхности Земли. Ясно, что получить фактические измерения ΔE_z точно в эпицентре будущего землетрясения можно только чисто случайно. Из полученных данных следует, что величина отношения R_E/R_0 лежит в интервале [0,6; 1,75], при этом средняя величина $\langle E_0 \rangle \approx 1$ кВ/м уже для диапазона магнитуд землетрясений $M \in [4,1; 4,7]$.

Далее, из всех рассмотренных в работе [3] сейсмогенных аномалий ΔE_z , предваряющих землетрясения, всего лишь 3 из них: No. 17, 25 и 42 (см. [3, с. 245]), - наблюдаются перед землетрясениями с $M \ge 6,0$. При этом только для события No. 42 (землетрясение 03.05.1996, M = 6,0, величина сейсмогенной аномалии $\Delta E_z = -633$ В/м за 5 дней до толчка, эпицентральное расстояние $R_e = 470$ км) сейсмогенная аномалия ΔE_z наблюдается на расстоянии большем, чем величина радиуса зоны подготовки на поверхности Земли R_0 (M = 6,0) $\cong 400$ км, а ее амплитуда по абсолютной величине больше или сравнима с величинами, имевшими место для событий No. 17 (землетрясение 18.10.1989, *M* = 6,1, величина сейсмогенной аномалии $\Delta E_z = -438$ В/м за 19 дней до толчка, эпицентральное расстояние $R_e = 205$ км) и No. 25 (землетрясение 26.03.1991, М = 6,4, величина сейсмогенной аномалии $\Delta E_z = -654$ В/м за 14 дней до толчка, эпицентральное расстояние $R_e = 210$ км). В этом случае имеются наблюдения аномально высоких по абсолютной величине значений ΔE_z только на одной станции – Baotou, лежащей на эпицентральном расстоянии R_e = 470 км. Аппроксимации возможного распределения величины сейсмогенного поля ΔE_z в зависимости от расстояния до эпицентра r перед землетрясением 03.05.1996 с M = 6,0, согласно (3), даны на рис. 2 для двух возможных значений отношения R_E/R_0 . Там же представлены числовые значения параметров соответствующих кривых для формулы (3), а опорное измеренное значение ΔE_z (r = 470 км) = 633 В/м с учетом знака поля в выбранной цилиндрической системе координат отмечено косым крестиком. В соответствии с приведенными ранее возможными величинами отношения R_E/R_0 , взяты два случая: $R_E/R_0 = 0,6$ (сплошная линия) и $R_E/R_0 = 1,75$ (штриховая линия).

Из рассмотрения рис. 2 хорошо видно, что увеличение R_E – характерного масштаба изменения величины сейсмогенного поля ΔE_z относительно R_0 приводит к уменьшению максимального значения ΔE_z , достигаемому в эпицентре землетрясения (E_0), в случае, если принимаемая модель аппроксимации по формуле (3) справедлива. Полученные аналитические аппроксимации ΔE_z позволяют относительно просто оценить величину магнитного эффекта тока, связанного с такими распределениями сейсмогенных аномалий ΔE_z на поверхности Земли, если известна величина проводимости воздуха вблизи поверхности Земли, в предположении, что она неизменна в горизонтальной плоскости, то есть $\sigma_0(r, \varphi, z = 0) \equiv \sigma_0 = \text{const.}$

Рис. 2. Аппроксимации возможного распределения величины возмущения сейсмогенного поля ΔE_z в зависимости от расстояния до эпицентра *r* перед землетрясением 03.05.1996 с M = 6,0, согласно формуле (3), для разных величин отношения характерных масштабов R_E и R_0 по опорному измеренному значению ΔE_z (r = 470 км) = 633 В/м (отмечено косым крестиком) с учетом знака поля в выбранной цилиндрической системе координат: $R_E/R_0 = 0,6$ (сплошная линия) и $R_E/R_0 = 1,75$ (штриховая линия)

3. Расчетные формулы для оценки магнитного эффекта тока крупномасштабных сейсмических источников на поверхности Земли

Плотность вертикального электрического тока на уровне поверхности Земли, обусловленного рассмотренными в разделе 2 крупномасштабными сейсмическими источниками, определяется формулой

$$j_z = \sigma_0 \Delta E_z(r, z = 0), \qquad (4)$$

где σ_0 – проводимость атмосферы при z = 0. Величина вертикального тока, протекающего через круговую окрестность точки z = 0, зависит от радиуса r этой окрестности и имеет вид

$$I_{Z}(r, z=0) = \sigma_{0} \int_{0}^{2\pi} \int_{0}^{r} \Delta E_{Z}(r', z=0) r' dr' d\varphi.$$
 (5)

Этот направленный вверх вертикальный электрический ток будет создавать вокруг оси *z* азимутальное магнитное поле (B_{φ}), направленное по часовой стрелке, если смотреть вверх. Величину этого магнитного поля можно найти, пользуясь законом Био – Савара – Лапласа о магнитной индукции электрического тока, при этом соответствующая формула применительно к рассматриваемым условиям может быть записана в виде

$$B_{\varphi}(r, z=0) = \frac{\sigma_{0}\mu_{0}}{2\pi r} \int_{0}^{2\pi} \int_{0}^{r} \Delta E_{Z}(r', z=0)r'dr'd\varphi, \quad (6)$$

где $\mu_0 = 4\pi \cdot 10^{-7}$ Гн/м — магнитная проницаемость вакуума. Так как величина ΔE_z задана явной аналитической формулой (3), после интегрирования получим

$$B_{\varphi}(r, z=0) = \mu_0 \sigma_0 E_0 R_E [1 - \exp\{-\left(\left[1 + (r/R_0)^2\right]^{1/2} - 1\right)/(R_E/R_0)\}\right]/(r/R_0).$$
(7)

4. Результаты и обсуждение

Для того, чтобы количественно оценить величину магнитного эффекта рассмотренных в разделе 2 крупномасштабных сейсмических источников тока на поверхности Земли по формуле (7), необходимо задать величину σ_0 . В соответствии с одной из последних глобальных моделей проводимости [8] $\sigma_0 \in [0,5 \cdot 10^{-13}; 2,0 \cdot 10^{-13}]$ См/м. Таким образом, величина $\sigma_0(z = 0) = \sigma_0^{\text{UB}} = 2,0 \cdot 10^{-13}$ См/м соответствует верхней (upper boundary, UB) границе разброса проводимости в области хорошей погоды по модели [8] (эта же величина приводится также в [9]). Такая ситуация вполне реалистична, так как выход радона в эпицентральных областях будущих землетрясений (см., например, [5]) увеличивает степень ионизации приземного слоя атмосферы, а следовательно и его проводимость. В наших расчетах ниже, для определенности, мы будем полагать, что $\sigma_0 = 1.0 \cdot 10^{-13}$ См/м.

Результаты расчета зависимостей азимутальной компоненты индукции магнитного поля B_{ϕ} от *r* на поверхности Земли для двух выбранных случаев сейсмогенных аномалий ΔE_z у поверхности Земли за 5 дней до землетрясения (перед землетрясениями EQ-1 {10.11.1986 с M = 4,7} и EQ-2 {03.05.1996 с M = 6,0} соответственно) иллюстрирует рис. 3.

Видно, что (при одинаковых значениях σ_0) с увеличением характерного масштаба источника R_0 , экспоненциально растущего с магнитудой землетрясения M, значительно возрастает и величина магнитного эффекта, пропорциональная также произведению E_0R_E , что явно видно из формулы (7). Для указанных на рис. З значений параметров сейсмических источников максимальное значение $B_{\phi}^{\max}(M = 4,7; r^{\max} \cong 131 \text{ км}) \approx 4 \text{ пТл}, при этом } r^{\max}$ обозначает положение максимума B_{ϕ}^{\max} относительно эпицентра землетрясения. Для более мощного землетрясения с M = 6,0 получаем, в случае I, $B_{\phi}^{\max}(\text{I: } M = 6,0; r^{\max} \cong 796 \text{ км}) \approx 30 \text{ пТл}, или, для ва$ $рианта II, <math>B_{\phi}^{\max}(\text{II: } M = 6,0; r^{\max} \cong 476 \text{ км}) \approx 37 \text{ пТл}.$

Рис. 3. Зависимости азимутальной компоненты индукции магнитного поля B_{ϕ} от эпицентрального расстояния *r* на поверхности Земли для двух выбранных случаев сейсмогенных аномалий ΔE_z у поверхности Земли за 5 дней до землетрясения перед землетрясениями EQ-1{10.11.1986 с M = 4,7} (штрихпунктирная линия) и EQ-2{03.05.1996 с M = 6,0} (сплошная и штриховая линии) соответственно. Характерные значения параметров источников сейсмогенного поля указаны над кривыми

Таким образом, магнитный эффект тока для землетрясения с M = 6,0 возрастает по сравнению с его величиной для землетрясения с M = 4,7 в 7,5 или 9 раз соответственно. Максимальные значения B_{ϕ}^{max} должны быть удвоены, если $\sigma_0(z = 0) = \sigma_0^{\text{UB}} = 2,0 \cdot 10^{-13} \text{ См/м},$ что соответствует верхней (UB) границе разброса проводимости в области хорошей погоды по модели [8].

В работе [10] было показано, что на поверхности Земли в стационарном состоянии вектор плотности вертикального электрического тока между грозовым облаком и поверхностью Земли (когда молниевые разряды отсутствуют) направлен вверх в окрестности электрической оси облака с радиусом ~7 км. Вне этой окрестности вектор плотности вертикального электрического тока направлен вниз. Несмотря на то, что полный ток между облаком и Землей равен нулю, он вызывает конечный магнитный эффект на поверхности Земли. Магнитное возмущение азимутально-симметрично относительно электрической оси грозового облака, направлено по часовой стрелке, если смотреть вверх, и при этом $B_{\phi}^{\max}(Q = 10 \text{ Кл}; r^{\max} \cong 3 \text{ км}) \approx 2 \text{ пТл},$ где абсолютная величина положительного и отрицательного зарядов облака, моделируемого диполем, составляет Q = 10 Кл. Сравнение показывает, что источник сейсмогенного электрического поля, связанный с землетрясением M = 4,7, дает вдвое больший магнитный эффект, но на расстоянии 131 км от электрической оси источника.

5. Выводы

Вертикальные обусловленные токи, крупномасштабными азимутально-симметричными источниками сейсмогенного квазистатического электрического поля в приземном слое атмосферы, вызывают магнитный эффект на поверхности Земли, В результате которого возникает азимутальная компонента индукции магнитного поля B_{0} , направленная по часовой стрелке, если смотреть вверх вдоль вертикальной электрической оси источника z. При этом максимальная величина B_{ϕ}^{max} , оцененная на основании ряда измерений перед землетрясениями сейсмогенных аномалий компоненты вертикальной квазистатического электрического поля (ΔE_z) в приземном слое атмосферы в работе [3], составит ~4 пТл для землетрясения с магнитудой M = 4,7 и будет находиться в диапазоне ~30 ÷ 37 пТл для землетрясения с M = 6,0. Значения $B_{\phi}^{\text{тах}}$ должны быть удвоены, если величина $\sigma_0(z = 0) = \sigma_0^{UB}$, то есть соответствует верхней границе разброса проводимости в области хорошей погоды по модели [8].

Как показывает полученная оценка, количественно этот эффект слишком мал для надежного обнаружения любым современным магнитометром, но в будущем это, по-видимому, будет возможно, когда достаточно чувствительные магнитометры будут созданы, т. к. работы в этом направлении продвигаются [11].

Работа выполнена в рамках и при поддержке Проекта Минобрнауки КП 19-270.

Литература

1. Correlations of seismic activity with electromagnetic emissions and variations in Kamchatka region / E. F. Vershinin, A.V. Buzevich, K. Yumoto [et al.] // In: Hayakawa, M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. – Tokyo : TER-RAPUB, 1999. – P. 513 – 517.

2. Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity / S. Smirnov // Natural Hazards and Earth System Sciences. – 2008. – Vol. 8. – N_{2} 4. – P. 745 – 749. – DOI : 10.5194/nhess-8-745-2008.

3. Progress in the research of atmospheric electric field anomaly as an index for short-impending prediction of earthquakes / J. Hao, T. M. Tang, D. R. Li // J. Earthquake Pred. Res. -2000. - Vol. 8. - N $_{2}$ 3. - P. 241 - 255.

4. Сидорин А. Я. Предвестники землетрясений /А. Я. Сидорин. – Москва : Наука, 1992. – 192 с.

5. Pulinets S. A., Boyarchuk K. A. Ionospheric precursors of earthquakes / S. A. Pulinets, K. A. Boyarchuk. – Berlin : Springer, 2004. – 315 p.

6. Pulinets S. and Ouzounov D. The Possibility of Earthquake Forecasting: Learning from nature / Sergey Pulinets and Dimitar Ouzounov. – Bristol, UK : IOP Publishing Ltd, 2018. 167 p. https://doi.org/10.1088/978-0-7503-1248-6

7. Estimation of the size of earthquake preparation zones / I. P. Dobrovolsky, S. I. Zubkov, V. I. Myachkin // Pure Appl. Geophys. -1979. - Vol. 117. - No 5. - P. 1025 - 1044.

8. Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1(WACCM) model simulations / A. J. G. Baumgaertner, J. P. Thayer, III R. R. Neely [et al.] // J. Geophys. Res. Atmos. – 2013. – Vol. 118. – P. 9221 – 9232. – DOI : 10.1002/jgrd.50725.

9. Electrification in the Earth's atmosphere for altitudes between 0 and 100 kilometers / Jr. R. K. Cole, E. T. Pierce // J. Geophys. Res. – 1965. – Vol. 70. – N_{2} 12. – P. 2735 – 2749. – DOI : 10.1029/JZ070i012p02735.

 Распределение вертикального электрического тока на поверхности Земли под грозовым облаком в стационарных условиях и его магнитный эффект / В. В. Хегай, В. П. Ким, А. В. Карелин // Вопросы электромеханики. Труды ВНИИЭМ. – 2018. – Т. 162. – №1. – С. 3 – 6.

11. Gudoshnikov S., Usov N., Nozdrin A., Ipatov M., Zhukov A., Zhukova V. Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire // Physica Status Solidi A-Applications and Materi- als Science. - 2014. - Vol. 211. - Iss. 5. - P. 980 - 985.

Поступила в редакцию 04.02.2020

Валерий Варламович Хегай, кандидат физико-математических наук, ведущий научный сотрудник, m. (495) 851-97-80, e-mail: hegai@izmiran.ru. (ИЗМИРАН). Александр Витальевич Карелин, доктор физико-математических наук, начальник отдела, m. (495) 513-54-01, e-mail: avkarelin@mail.ru. (ФГУП ЦНИИмаш).

MAGNETIC EFFECT OF LARGE-SCALE SEISMOGENIC CURRENT SOURCES AT THE EARTH'S SURFACE ACCORDING TO MEASUREMENTS OF A SEISMOGENIC QUASISTATIC ELECTRIC FIELD IN THE SURFACE LAYER OF THE ATMOSPHERE

V. V. Khegay, A. V. Karelin

The paper presents calculations of the horizontal distribution of the magnetic field induction azimuthal component B_{φ} at the Earth's surface due to the vertical electric current of large-scale seismic sources. The axially symmetric electrical structure of these sources is obtained as a result of analytical approximation of the negative anomalies measurements of the seismogenic quasistatic electric field vertical component (ΔE_2) in the surface layer of the atmosphere. Such anomalies occur one day/tens of days before the earthquake in the earthquake's preparation zone. It was found that the azimuthal component of the magnetic field induction B_{φ} generated by the current flowing upward is directed clockwise when viewed upward along the vertical electric axis of the source. In this case, the maximum value of B_{φ}^{max} will be ~ 4 pT for a source associated with an earthquake of magnitude M = 4,7 and will be in the range of ~30 ÷ 37 pT for an earthquake with M = 6,0, which is ~7,5 ÷ 9 times larger.

Key words: seismogenic quasistatic electric field, large-scale sources, magnetic effect of seismogenic current sources.

References

1. Correlations of seismic activity with electromagnetic emissions and variations in Kamchatka region / E. F. Vershinin, A.V. Buzevich, K. Yumoto [et al.] // In: Hayakawa, M. (Ed.), Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes. – Tokyo: TERRAPUB, 1999. – P. 513 – 517.

2. Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity / S. Smirnov // Natural Hazards and Earth System Sciences. -2008. - Vol. 8. - N $_{2}$ 4. - P. 745 - 749. - DOI: 10.5194/nhess-8-745-2008.

3. Progress in the research of atmospheric electric field anomaly as an index for short-impending prediction of earthquakes / J. Hao, T. M. Tang, D. R. Li // J. Earthquake Pred. Res. $-2000. - Vol. 8. - N_{2} 3. - P. 241 - 255.$

4. Sidorin A. Ia. Precursors of earthquakes. /A. Ia. Sidorin. - Moscow: Nauka, 1992. - 192 p.

5. Pulinets S. A., Boyarchuk K. A. Ionospheric precursors of earthquakes / S. A. Pulinets, K. A. Boyarchuk. – Berlin: Springer, 2004. – 315 p.

6. Pulinets S. and Ouzounov D. The Possibility of Earthquake Forecasting: Learning from nature / Sergey Pulinets and Dimitar Ouzounov. – Bristol, UK : IOP Publishing Ltd, 2018. 167 p. https://doi.org/10.1088/978-0-7503-1248-6

7. Estimation of the size of earthquake preparation zones / I. P. Dobrovolsky, S. I. Zubkov, V. I. Myachkin // Pure Appl. Geophys. – 1979. – Vol. 117. – No. 5. – P. 1025 – 1044.

8. Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1(WACCM) model simulations / A. J. G. Baumgaertner, J. P. Thayer, III R. R. Neely [et al.] // J. Geophys. Res. Atmos. – 2013. – Vol. 118. – P. 9221–9232. – DOI : 10.1002/jgrd.50725.

9. Electrification in the Earth's atmosphere for altitudes between 0 and 100 kilometers / Jr. R. K. Cole, E. T. Pierce // J. Geophys. Res. – 1965. – Vol. 70. – \mathbb{N} 12. – P. 2735 – 2749. – DOI : 10.1029/JZ070i012p02735.

10. Distribution of vertical electric current on the Earth surface under charged cloud under steady-state conditions and its magnetic effect / V. V. Khegai, V. P. Kim, A. V. Karelin // Matters of Electromechanics. VNIIEM Proceedings. – 2018. – Vol. 162. – No. 1. – Pp. 3 – 6.

11. Gudoshnikov S., Usov N., Nozdrin A., Ipatov M., Zhukov A., Zhukova V. Highly sensitive magnetometer based on the off-diagonal GMI effect in Co-rich glass-coated microwire // Physica Status Solidi A-Applications and Materials Science. – 2014. – Vol. 211. – Iss. 5. – P. 980 – 985.

Valeri Varlamovich Khegai, Candidate of Physics and Mathematics (Ph. D.), Leading Researcher, tel.: +7 (495) 851-97-80, e-mail: hegai@izmiran.ru. (IZMIRAN). Aleksandr Vitalevich Karelin, Doctor of Physics and Mathematics (D. Sc.), Head of Department, tel.: +7 (495) 513-54-01, e-mail: avkarelin@mail.ru. (FSUE TSNIImash).