РАСЧЁТ АКТИВНОЙ ЗОНЫ И ТЕПЛООБМЕННИКА ЯОП-УСТАНОВКИ ДЛЯ УТИЛИЗАЦИИ ЯДЕРНЫХ ОТХОДОВ С УЧЁТОМ ТЕПЛОФИЗИЧЕСКИХ ОГРАНИЧЕНИЙ

А.В. Карелин (*ЦНИИМАШ)* И.Н. Хиблин, И.Ю. Пугач (*ФГУП «НПП ВНИИЭМ»)* Л.А. Амелин (ОАО *«НИИЭМ»*)

Приведён теплофизический и прочностной расчёт конструкции активной зоны, рассчитан контур охлаждения аргона установки по утилизации радиоактивных отходов на основе ядерно-оптических преобразователей с учётом теплофизических ограничений. Показано, что объёмное тепловыделение в газе 87 МВт, температура газа на выходе из активной зоны 133°С, температура воды на входе в контур охлаждения 20°С, давление газа 10 атм, скорость прокачки 3 м/с. Ключевые слова: ядерно-оптический преобразователь, цезий-137, радиоактивные отходы, утилизация, теплоноситель, расход газа, коэффициент сопротивления, объёмное тепловыделение, перепад температур, скорость прокачки, активная зона (хранилище).

Введение

Согласно энергетической стратегии России, увеличение потребности в электроэнергии целесообразно покрывать за счёт роста её выработки на АЭС в основном в Европейской части страны [1]. Тем не менее, не следует забывать и об отрицательных сторонах развития ядерной энергетики. Одной из отрицательных сторон ядерной энергетики являются радиоактивные отходы. Твёрдые радиоактивные отходы захоранивают в контейнерах из нержавеющей стали в подземных выработках, соляных пластах, на дне океанов. Радиация является жёстким излучением, которое можно использовать как источник энергии в ядерно-оптических преобразователях (ЯОП) с дальнейшей конверсией оптического излучения в электроэнергию с помощью фотоэлектрических преобразователей. Электричество может вырабатываться в постоянном режиме в течение многих лет практически без смены источника излучения, если уровень остаточной радиоактивности и период полураспада достаточно высоки.

При накачке жёстким ионизирующим излучением последовательность процессов следующая: быстрая заряженная частица или коротковолновый фотон ионизуют газ, затем образовавшиеся низкоэнергетичные электроны плазмы формируют в столкновениях максвелловское распределение и рекомбинируют, вызывая излучение атомов и молекул в широком диапазоне спектра. Такая плазма оказывается переохлаждённой [2].

Основным источником проникающей радиации отработанного топлива ядерных реакторов является γ -излучение Cs¹³⁷ (период полураспада 30 лет) с энергией $E_{\gamma} = 662$ кэВ. В этом случае задача созда-

ния источника энергии на основе ЯОП сводится к поиску радиолитически и термически устойчивой, а также химически инертной среды с достаточно высоким КПД преобразования ядерной энергии в оптическое излучение в удобном для кремниевых и халькопиритных фотоэлектрических преобразователей в диапазоне спектра. В качестве активной среды предлагается смесь Ar - N₂, излучающая преимущественно в диапазонах длин волн 350 - 410 и 750 – 1050 нм на переходах С-В и В-А молекулы азота N₂ соответственно [2-4]. В работе [5] были проведены предварительные расчёты энергетических характеристик ЯОП-установки на смеси Ar – N2, и рассмотрены теплофизические ограничения, накладываемые на параметры данной установки для обеспечения её эффективной работы.

Целью данной работы является получение энергетических и теплофизических характеристик с учётом теплофизических ограничений ЯОПустановки, расчёт теплообменника для охлаждения рабочего газа Ar в замкнутой системе подачи газа, а также проведение оценочного прочностного расчёта современными средствами моделирования и конечно-элементного анализа.

Теплофизический расчёт активной зоны

Для теплофизического расчёта установки примем:

– внутренний диаметр хранилища *D* = 80 м;

- высота хранилища H = 3 м;

– температура аргона на входе в хранилища $t_{in} = 30^{\circ}$ С;

– теплопроводность радиоактивных отходов $\lambda_{or} = 20 \text{ Bt/}(\text{M}\cdot\text{K})$ [6];

- давление аргона в хранилище p = 10 атм;

Рис. 1. План размещения бочек в хранилище

- количество бочек N = 207;
- удельное тепловыделение в бочке $q = 10^{-1}$ Вт/см³;
- толщина стенки бочки $\delta = 0.5$ см;
- высота бочки *h* = 1 м;
- диаметр бочки *d* = 0,5 м;
- материал стенки бочки сталь 12X18H9T;
- предел текучести $\sigma_{\rm T} = 137 \cdot 10^6$ Па.

Бочки складированы в три этажа в центре хранилища, в трёх кольцах (рядах) по 23 сборки (N_k) из трёх бочек (рис. 1).

Такое расположение бочек вызвано тем, что аргон подаётся в хранилище поперечно для лучшего теплосъёма. Радиус внутреннего кольца R_k вычисляем по формуле

$$R_k = \frac{S_1}{\left(2\sin\left(\frac{\pi}{N_k}\right)\right)},\tag{1}$$

где $S_1 = 1$ м – расстояние между бочками во внутреннем кольце.

Шаг между вторым и третьим кольцами

$$S_2 = S_1 \cos\left(\frac{\pi}{6}\right). \tag{2}$$

Площадь каналов (скорость прокачки направлена поперёк бочек)

$$F = HN_k \left(S_1 - d \right). \tag{3}$$

Составляем уравнение теплового баланса хранилища:

$$Q_1 N + q_{\nu} V_0 = G c_p \Delta T_{\Gamma}, \qquad (4)$$

где Q_1 – выход тепла из одной бочки; N – количество бочек; q_v – удельная мощность объёмного тепловыделения; V_0 – объём аргона в хранилище; G – расход газа; c_p – удельная теплоёмкость; $\Delta T_r = T_{out} - T_{in}$ – нагрев газа при прокачке через активную зону.

Основной вклад в нагрев теплоносителя даёт объёмное тепловыделение в самом газе, поскольку

$$\frac{q_{\nu}V_0}{Q_1N} = 20.$$
 (5)

Нагрев теплоносителя при прокачке через активную зону

$$\Delta T_{\rm r} = \frac{(Q_1 N + q_{\nu} V_0)}{Gc_p} = 103^{\circ} {\rm C} \,. \tag{6}$$

Мощность потока аргона

$$P = G \frac{w^2}{2} = 7,3 \text{ KBT.}$$
(7)

Перепад температур между осью бочки и её внутренней стенкой при условии идеального контакта оценивается по формуле

$$\frac{qd_1^2}{16\lambda_{\rm orr}} = 75^{\circ}\mathrm{C} \,. \tag{8}$$

Количество теплоты, проходящей через стенку за 1 с из одной бочки,

$$Q_1 = \frac{2\pi\lambda_c \Delta h}{\ln\left(\frac{d_2}{d_1}\right)},\tag{9}$$

где $d_2 = d$ – внешний диаметр бочки; d_1 – внутренний диаметр бочки; λ_c – коэффициент теплопроводности стали 12Х18Н9Т, он возрастает с ростом температуры, примем его «наихудшее» значение (для 30° C) – $\lambda_c = 14,5$ Вт/(м·К). Перепад температуры поперёк стенки бочки несущественен:

$$\Delta = \frac{Q_1}{\left(2\pi\lambda_c h\right)} \ln\left(\frac{d_2}{d_1}\right) = 4^{\circ} \text{C}.$$
 (10)

Теплоотдача первого ряда определяется характером движения газа или начальной турбулентностью потока и близка к условиям обтекания одиночной сборки из трёх бочек, образующих вертикальный цилиндр. В третьем ряду турбулентность потока принимает стабильный характер, присущий данной компоновке пучка. При одних и тех же условиях теплоотдача в шахматных пучках выше, чем в коридорных, за счёт лучшего перемешивания газа.

Коэффициент теплопроводности газа заметно не меняется с изменением давления. Исключение составляют очень малые (меньше $2,66 \cdot 10^3$ Па) и очень большие ($2 \cdot 10^9$ Па) давления. Коэффициент теплопроводности аргона [7] при $t_2 = 160^{\circ}$ C $\lambda_2 = 0,021$ Вт/(м·К), при $t_1 = 60^{\circ}$ C $\lambda_1 = 0,017$ Вт/(м·К). Примем коэффициент теплопроводности при температуре t° C

$$\lambda(t) = \frac{\lambda_2 - \lambda_1}{t_2 - t_1} (t - t_1) + \lambda_1.$$
(11)

Соответственно на входе и выходе хранилища $\lambda(t_{in}) = 0,016 \text{ Br/(M·K)}, \lambda(t_{out}) = 0,02 \text{ Br/(M·K)}. Коэф$ фициент температуропроводности*a*равен отноше $нию коэффициента теплопроводности вещества <math>\lambda$ к произведению его удельной теплоёмкости c_p на плотность:

$$a = \frac{\lambda(t)}{c_p \rho}.$$
 (12)

Соответственно для аргона на входе и выходе хранилища коэффициент температуропроводности равен $a_{in} = 1,933 \cdot 10^{-6} \text{ м}^2/\text{с}$, $a_{out} = 3,291 \cdot 10^{-6} \text{ м}^2/\text{c}$. Коэффициент динамической вязкости аргона при 20°С равен

$$\mu(T) = \mu_0 \sqrt{\frac{T}{293}} \left[\left(1 + \frac{C_0}{293} \right) \left(1 + \frac{C_0}{T} \right)^{-1} \right], \quad (13)$$

где $\mu_0 = 2,2 \cdot 10^{-5}$ Па·с; С₀ – постоянная Сазерленда [8]. Зависимость μ от температуры показана на рис. 2.

Коэффициент динамической вязкости заметно не меняется с изменением давления (для воздуха на 25% изменением давления в 200 раз от нормального). Коэффициент кинематической вязкости v – отношение коэффициента динамической вязкости μ (H·c/м²) к плотности ρ . Соответственно для аргона на входе и выходе хранилища коэффициент температуропроводности равен $v_{in} = 1,433 \cdot 10^{-6} \text{ м}^2/\text{c}$, $v_{out} = 2,457 \cdot 10^{-6} \text{ м}^2/\text{c}$.

Аргон после прокачки из центра через сборки из бочек, т. е. через центральную зону хранилища, относительный размер которой $\varepsilon_c = 0,135$, нагревается незначительно:

$$\delta t = \frac{\left(Q_1 N + q_v V_0 \varepsilon_c^2\right)}{\left(G c_p\right)} = 7^{\circ} C.$$
 (14)

Примем поэтому для аргона в центральной зоне хранилища, включая зону сборок из бочек, следующие параметры:

– температура аргона $t_{in} = 30^{\circ}$ С;

- плотность аргона $\rho_{in} = 15,7 \text{ кг/м}^3$;

- коэффициент температуропроводности $a_{in} = 1,9\cdot10^{-6} \text{ м}^2/\text{с};$

- коэффициент кинематической вязкости $v_{in} = 1,4\cdot 10^{-6} \text{ m}^2/\text{c};$

Уравнение теплового баланса бочки:

$$\alpha (t_{c2} - t_{r2}) = \frac{Q_1}{\pi h d} = q_{cr} \Leftrightarrow \frac{Q_1}{\pi h d} = q \frac{\pi d^2}{4(\pi h d)} h = \frac{q d}{4} = \alpha (t_{c2} - t_{r2}), \operatorname{BT/M}^2,$$

откуда и внешняя температура бочки

$$t_{c2} = \frac{qd}{4\alpha} + t_{r2},$$
 (15)

где t_{r2} – температура аргона на выходе из центральной части хранилища.

Рис. 2. Динамическая вязкость аргона

Величина коэффициента теплоотдачи α в газе, в котором есть объёмное тепловыделение q_{ν} , оценивается по формуле [9]

$$\alpha = \frac{\alpha_0}{1 + 0.0834 \frac{q_v}{q}} = 0.995\alpha_0, \qquad (16)$$

где $\alpha_0 = \lambda Nu/d$ для аргона в центральной зоне хранилища, включая зону сборок из бочек. Число Нуссельта Nu при поперечном обтекании газом пучка гладких «труб» и шахматном расположении «цилиндров», при Re > 2.10⁵ (режим сверхкритического обтекания) [10]:

Nu = 0,031
$$\varepsilon_{\phi} C_z C_k \operatorname{Re}^{0.8} \operatorname{Pr}^{0.4} \left(\frac{s_1}{s_2}\right)^{0.2} = 1572,$$
 (17)

где $C_z = 0,85$ – коэффициент, учитывающий зависимость осреднённой теплоотдачи от числа рядов пучка; $s_1 = 1$ м – поперечный шаг; $s_2 = 0,866$ м – продольный шаг; $C_k = 1$ – коэффициент, учитывающий увеличение теплоотдачи от шероховатых поверхностей; критерий Прандтля $\Pr = v_{in}/a_{in} = 0,745$ и число Рейнольдса $\operatorname{Re}(w) = wd/v_{in} = 10^6$.

Коэффициентом $\varepsilon_{\phi} = 1$ учитывается влияние угла атаки, скорость аргона при прокачке направлена перпендикулярно пучку сборок из трёх бочек.

Рис. 3. Схема хранилища: 1 – склад контейнеров; 2 – оболочка хранилища; 3 и 4 – трубы для аргона; 5 – теплообменник; 6 – подвод воды

Коэффициент теплоотдачи $\alpha = 50 \text{ Br/(м}^2 \cdot \text{K})$ при «наихудшем» значении коэффициента теплопроводности $\lambda = 0,016 \text{ Br/(м} \cdot \text{K})$ аргона (для 30°С). Соответственно температура $t_{c2} = 382^{\circ}\text{C}$ внешней стенки бочки. Температура на оси бочки:

$$t_{\rm max} = t_{\rm c2} + \Delta + \frac{qd_1^2}{16\lambda_{\rm or}} = 462^{\,\rm o}{\rm C} \;.$$
 (18)

По суммарной площади $F = 32,5 \text{ м}^2$ каналов и количеству труб $N_{out} = 36$, отводящих аргон из хранилища, найдём внутренний диаметр $d_{\rm T}$ отводящих труб (см. рис. 3):

$$d_{\rm T} = 2\sqrt{\frac{F}{\pi N_{out}}} = 1,105 \,\,{\rm m.}$$
 (19)

Для работы ЯОП-установки в стационарном режиме необходимо отводить тепло мощностью

$$Q_1 N + q_v V_0 = 87 \,\mathrm{MBr.}$$
 (20)

Применение вторичных энергоресурсов в таких количествах представляется перспективным для нужд теплоснабжения промышленных и жилых зданий, в тепличных хозяйствах и др.

Оценочный расчёт теплообменника

Для расчёта теплообменника примем:

- тепловую нагрузку на один теплообменник $Q_{\rm T} = Q_{\rm obm} / N_{out} = 2,4 \cdot 10^6 \, {\rm Br};$

– начальные и конечные температуры аргона в теплообменнике $t_{out} = 133$ °C и $t_{in} = 30$ °C;

- нагрев воды от $t_{\text{ж.н}} = 20^{\circ}$ С до $t_{\text{ж.к}} = 75^{\circ}$ С;
- скорость в теплообменных трубах $w_{\rm m} = 0.5$ м/с;
- удельную теплоёмкость воды $c_{\rm ж} = 4174 \, \text{Дж/(кг·K)};$
- плотность воды при 50°С р_ж = 988 кг/м³ [11];
- расход воды на один теплообменник $G_{\rm x} = 10.5$ кг/с;
- объём при заданном расходе $V_{\pi} = 0,011 \text{ м}^3/\text{с}.$

Наиболее часто в кожухотрубчатых теплообменниках применяют трубы наружных диаметров 25 мм с толщиной стенки 1,6 – 3,0 мм и трубы наружным диаметром 20 мм с толщиной стенки 1,6 – 2,0 мм. Внешний диаметр теплообменных труб $d_0 = 0,025$ м и толщина стенки $\delta_p = 0,0025$ м (материал – технический алюминий). Площадь внутреннего сечения труб

$$S_{_{\rm T}} = \frac{\pi \left(d_0 - 2\delta_{\rm p} \right)^2}{4}.$$
 (21)

Количество теплообменных труб в теплообменнике на один ход воды

$$n_t = ceil\left(\frac{V_{\rm m}}{w_{\rm m}S_{\rm r}}\right) = 68.$$
 (22)

Внутренний диаметр трубы, подводящей воду к блоку теплообменников, подключенному к отводящей аргон из хранилища трубе:

$$\pi \frac{D_B^2}{4} = S_{\tau} n_t \Leftrightarrow D_B = \sqrt{\frac{4}{\pi} S_{\tau} n_t} = 0,165 \text{ m.} \quad (23)$$

Коэффициент теплопроводности материала стенки (технического алюминия), разделяющей аргон и воду, $\lambda_p = 180 \text{ Bt/(M·K)}$; термическое сопротивление стенки, разделяющее аргон и воду, $R_{\rm cr} = 1,389 \cdot 10^{-5} \text{ (M}^2 \text{ K})/\text{BT}$; коэффициент динамической вязкости воды $\eta_{\rm sc} = 0,55 \cdot 10^{-3} \text{ H·c/m}^2$ [11]; коэффициент кинематической вязкости воды $v_{\rm sc} = \eta_{\rm sc}/\rho_{\rm sc}$; критерий Прандтля $\Pr_{\rm sc} = 3,55$ (вода при 50°C) и $\Pr_{\rm c} = 2,1$ (вода при 95°C у стенки). Число Рейнольдса для течения воды

$$\operatorname{Re}_{*} = \frac{w_{*} \left(d_{0} - 2\delta_{p} \right)^{2}}{v_{*}} = 1,8 \cdot 10^{4}.$$
 (24)

Число Нуссельта при развитой турбулентности в прямой трубе (формула М.А. Михеева получена на основе обобщения различных опытных данных в интервалах чисел Re от 10^4 до 5· 10^6 и Pr от 0,6 до 2500)

$$Nu_{\pi} = 0,021\varepsilon_{1} \operatorname{Re}_{\pi}^{0.8} \operatorname{Pr}_{\pi}^{0.43} \left(\frac{\operatorname{Pr}_{\pi}}{\operatorname{Re}_{\pi}}\right)^{0.25}.$$
 (25)

Коэффициент теплопроводности воды $\lambda_{\rm sc} = 0,643$ Вт/(мK), значение коэффициента теплоотдачи воды:

$$\alpha_{\rm B.H} = {\rm Nu}_{\pi} \frac{\lambda_{\pi}}{d_0 - 2\delta_{\rm p}} = 3361 \,{\rm Bt}/({\rm M}^2 \cdot {\rm K}).$$
 (26)

Коэффициент теплоотдачи со стороны жидкости – воды α_{в.н} превышает в десятки раз коэффициент со стороны газа при поперечном обтекании газом гладких труб; интенсифицировать теплоотдачу можно оребрением труб снаружи в виде спиральных или круглых поперечных рёбер.

По некоторым представлениям оптимальное расстояние между рёбрами должно быть не менее двойной толщины пограничного слоя; для турбулентного потока толщина гидродинамического пограничного слоя

$$\delta_{\pi}(x) = \sqrt{\frac{12xv_{out}}{w_{out}}}.$$
(27)

Если за определяющий размер принять наружный (несущий) диаметр d_0 оребрённой трубы, шаг ребра $t = (d_0/7) = 3,6 \cdot 10^{-3}$ и высоту $h_0 = 5t = 0,018$, м, то двойная толщина пограничного слоя будет не более $2\delta_n(d_0) = 8,5 \cdot 10^{-4}$, м, толщина ребра $\delta_r = 2 \cdot 10^{-3}$, м. Условие $t - \delta_r > 2\delta_n(d_0)$ и $d_{0r} \gg \delta_n(d_0)$ выполнены, $t - \delta_r$ – расстояние между рёбрами:

$$\frac{t-\delta_r}{2\delta_{\rm n}(d_0)} = 1,8.$$
(28)

Число Рейнольдса

$$\operatorname{Re}_{f} - \frac{w_{out}d_{0}}{v_{out}} = 4 \cdot 10^{4}.$$
 (29)

Тут за расчётную скорость w_f должна быть принята скорость в наименьшем проходном сечении пучка, для уменьшения аэродинамического сопротивления проходное поперечное сечение пучка на один ход по аргону будет выбрано достаточным, чтобы обеспечить условие $w_f \ge w_{out}$. Поперечный шаг $s_1 = 3d_0 = 0,075$ м и продольный шаг $s_2 = 0,83$, $s_1 = 0,062$ м в пучке оребрённых труб.

Коэффициент оребрения є исследуемых трубок – отношение полной наружной поверхности, включая и (тонкие) рёбра, к поверхности такой же длины гладкой трубы $t\pi d_0$ (рис 4). Если площадь ребра

$$F_{\rm p} = \delta_r \pi \left(d_0 + 2h_0 \right) + 0.5\pi \left[\left(d_0 + 2h_0 \right)^2 - d_0^2 \right] \quad (30)$$

и площадь неоребрённой части трубы $(t - \delta_r) \pi d_0$, то:

$$\varepsilon = \frac{F_{\rm p} + (t - \delta_r)\pi d_0}{t\pi d_0}.$$
(31)

Рис. 4. Параметры оребрения труб

Для надёжности размеры t, h_0 , s_1 , s_2 выбраны так, чтобы воспользоваться формулами средней теплоотдачи, полученными по результатам экспериментальных исследований и приведёнными в работе [9], где для коридорных пучков труб в интервалах Re_f – от 5·10³ до 10⁵; a – от 1,72 до 3,0; b – от 1,8 до 4,0; ε – от 5 до 12 указана зависимость:

$$Nu_f = 0,303\epsilon^{-0,375} \operatorname{Re}_f^{0,625} \operatorname{Pr}_f^{0,36} = 69.$$
(32)

При обтекании шахматного пучка оребрённых труб при Re – от $2 \cdot 10^4$ до $2 \cdot 10^5$; относительных шагах a – от 1,1 до 4,0; b – от 1,03 до 2,5; параметрах оребрения h/d – от 0,07 до 0,715; t/d – от 0,06 до 0,36 получены следующие обобщающие зависимости [10] для шахматных пучков труб:

$$\operatorname{Nu}_{f} = 0,0507 \left(\frac{s_{1}}{s_{2}}\right)^{0,2} \left(\frac{t}{d_{0}}\right)^{0,18} \left(\frac{d_{0}}{h_{0}}\right)^{0,14} \times \operatorname{Re}_{f}^{0,8} \operatorname{Pr}_{f}^{0,4} = 170.$$
(33)

Примем коэффициент теплопроводности $\lambda_r = 0,017 \text{ Br/(M·K)}$, его значения при $100^{\circ}\text{C} - \lambda_r = 0,019$, при $30^{\circ}\text{C} - \lambda_r = 0,016$.

При обтекании шахматного пучка оребрённых труб в данном режиме коэффициент теплоотдачи аргона больше, чем при обтекании коридорного пучка оребрённых труб:

$$\alpha_1 = \mathrm{Nu}_f \frac{\lambda_r}{d_0} = 116 \mathrm{Br/(m^2 \cdot K)}.$$
 (34)

Для расчёта передачи тепла через оребрённую трубу найдём сначала приведённый коэффициент апр теплоотдачи аргона:

$$\alpha_{\rm np} = \alpha_1 \left[1 - \left(1 - E \right) \frac{F_{\rm p}}{F} \right], \tag{35}$$

где $E = 0,9 - эффективность работы ребра для <math>D/d_0 =$ = 2,4 при $\beta_h = 0,45$; коэффициент теплопроводности $\lambda_p = 180$ Вт/(м·К) [10].

Обозначим f_p отношение площади F_p ребра к площади F полной наружной поверхности трубы, приходящейся на шаг ребра t (см. рис. 4):

$$f_{\rm p} = \frac{F_{\rm p}}{F} = 0,977. \tag{36}$$

Отсюда получаем, что $\alpha_{np} = 104, 4 \text{ Bt/}(\text{м}^2 \cdot \text{K})$. Если тепловой поток отнести к наружной поверхности несущей трубы F_1 , приходящейся на шаг ребра t, то

$$Q = k_1 F_1 \Delta T, \qquad (37)$$

где ΔT – разность температур теплоносителей, $F_1 = t\pi d_0$; F, F_1 – поверхности между плоскостями, перпендикулярными к трубе и отстоящими друг от друга на расстояние t (рис. 4); k_1 – коэффициент теплопередачи, отнесённый к единице наружной поверхности несущей трубы:

$$k_{1} = \left[\frac{1}{\alpha_{_{\mathrm{BH}}}}\frac{F_{1}}{F_{_{\mathrm{BH}}}} + \frac{F_{1}}{t2\pi\lambda_{p}}\ln\left[\frac{d_{0}}{\left(d_{0}-2\delta_{p}\right)}\right] + \frac{1}{\alpha_{_{\mathrm{TP}}}}\frac{F_{1}}{F}\right]^{\mathrm{T}} =$$

$$= 1120, \mathrm{Br/}(\mathrm{M}^{2}\cdot\mathrm{K})$$
(38)

где $F_{\rm BH} = t\pi (d_0 - 2\delta_p) -$ внутренняя поверхность несущей трубы.

При определении температуры стенок t_c теплообменных труб введём приведённые к наружной поверхности F_1 коэффициенты теплоотдачи:

$$\alpha_{c1} = \alpha_{BH} \frac{F_{BH}}{F_1} \mu \ \alpha_{c2} = \alpha_{np} \frac{F}{F_1}.$$
 (39)

Температура стенки теплообменных труб

$$t_{\rm c}\left(t_{\rm B},t_{\rm a}\right) = \frac{\alpha_{\rm c1}t_{\rm B} + \alpha_{\rm c2}t_{\rm a}}{\alpha_{\rm c1} + \alpha_{\rm c2}},\tag{40}$$

где $t_{\rm B}$ и $t_{\rm a}$ – температура воды и аргона; максимальная температура стенки теплообменных труб $t_{\rm c}(75,133) = 99,6^{\circ}$ С.

Оценим размеры кожухотрубчатых теплообменников. Рассмотрим размещение теплообменных труб в трубных решетках, показанное на рис. 5. По конструктивным соображениям число ходов m по трубному простр,анству примем равным 4. Минимальный внутренний диаметр D_a цилиндрического кожуха аппарата определим по минимальному расстоянию d_0 от ближайшего ребра до кожуха. Среднее число труб в ряду – 15. Среднее проходное сечение по аргону (рис. 5.)

$$16F_0 N_{\rm m} = \frac{\pi d_{\rm \tau}^2}{4},\tag{41}$$

где F_0 – площадь (на рис. 4 заштрихована): $F_0 = t(s_1 - d_0) - 2\delta_r h_0$; $N_{\rm III}$ – число рёбер на ход аргона; $d_{\rm T}$ – внутренний диаметр трубы, отводящей аргон из хранилища. Проходное сечение по аргону должно занимать вдоль труб расстояние не менее $S_{\rm III} = t N_{\rm III} = 2$ м.

Температурная схема при противотоке: для газа

$$T_1 = 133^{\circ}\text{C} \Longrightarrow T_2 = 30^{\circ}\text{C}$$
;

для воды

$$t_2 = 75^{\circ}\text{C} \Longrightarrow t_1 = 20^{\circ}\text{C} ,$$

$$\Delta T_6 = T_1 - t_2 = 58^{\circ}\text{C} ,$$

$$\Delta T_M = T_2 - t_1 = 10^{\circ}\text{C} .$$

Уравнение теплопередачи (на блок теплообменников, подключенных к одной трубе, отводящей аргон из хранилища) следующее:

$$k_1 \pi \left(d_0 - \delta_p \right) x \Delta t_{cp} n_a = \frac{Q_1 N + q_v V_0}{N_{out}}, \qquad (42)$$

где x – условная длина одной теплообменной трубы; x = Lm; L – расчётная длина одной теплообменной трубы в теплообменнике; m = 4 – число ходов по трубному пространству (по воде) в теплообменнике; $n_a = 68$ – количество теплообменных труб в теплообменнике на один ход воды.

Средняя разность температур в многоходовом теплообменнике:

$$\Delta t_{\rm cp} = \varepsilon_{\Delta t} \Delta t_{\rm n.cp} = 25^{\circ} {\rm C}, \qquad (43)$$

где $\Delta t_{n.cp}$ – среднелогарифмическая разность температур противотока; $\varepsilon_{\Delta t} = 0,9$ – поправка на перекрестный ток вода – аргон [7];

$$\Delta t_{\text{n.cp}} = \frac{\Delta T_6 - \Delta T_{\text{M}}}{\ln\left(\frac{\Delta T_6}{\Delta T_{\text{M}}}\right)} = 27^{\circ}\text{C}.$$
 (44)

Рис. 5. Схема ходов (1 – 4) и размещение водяных трубок в решётке, размеры в мм

Длина одной теплообменной трубы в теплообменнике L = 4,6 м (42), но учитывая, что проходное сечение по аргону должно занимать вдоль труб расстояние не менее чем 2 м, а также малый зазор между рёбрами (в продольном направлении), то целесообразно принять за основу конструкции теплообменник с сегментной перегородкой, показанный на рис. 5. Длину и число рядов одной теплообменной трубы в теплообменнике целесообразно принять равной $L_1 = \max(2S_m, L) = 4,6$ м и z = 18.

Расчёт мощности на прокачку воды через теплообменник

Примем эквивалентную шероховатость теплообменной трубы $\Delta_{\rm m} = 0,0002$ м. Начало перехода к квадратичному закону сопротивления определяется по критическому значению числа Рейнольдса:

$$\operatorname{Re}_{\rm kp} = \left[120 \frac{\left(d_0 - 2\delta_{\rm p}\right)}{\Delta_{\rm m}}\right] = 3,9 \cdot 10^4, \qquad (45)$$

где (d₀ – 2δ_p) – внутренний диаметр трубы. Число Рейнольдса для течения воды

$$\operatorname{Re}_{*} = \frac{w_{*} \left(d_{0} - 2\delta_{p} \right)}{v_{*}} = 1,8 \cdot 10^{4}, \qquad (46)$$

т. е. течение гарантированно турбулентно. При неизотермическом турбулентном течении в гладких трубах для неметаллических жидкостей при $3,3\cdot10^3 < \text{Re} < 25\cdot10^3$; $0,3 < \eta_{\text{ст}}/\eta < 38$; 1,3 < Pr < 180 коэффициент ζ гидравлического трения при нагревании жидкости определяется по формуле:

$$\zeta = \frac{0.316}{Re_{\pi}^{0.25}} \left(\frac{\eta_{c\pi}}{\eta_{\pi}}\right)^{0.19} = \frac{0.316}{Re_{\pi}^{0.25}}, \qquad (47)$$

где динамическую вязкость воды η_{c*} у стенок и среднюю её величину η_{*} можно принять равными, что даст незначительно бо́льшую величину ζ . Потеря давления на трение в прямых трубах

$$\Delta p_{\rm T} = \zeta \frac{mL_1}{d_0 - 2\delta_{\rm p}} \frac{w_{\rm x}^2 \rho_{\rm x}}{2} = 3.1 \cdot 10^3 \,\Pi \text{a.} \tag{48}$$

Затрата давления на создание скорости потока

$$\Delta p_{\rm ck} = \frac{w_{\rm sk}^2 \rho_{\rm sk}}{2} = 123,5 \; \Pi a. \tag{49}$$

Для коэффициентов местных сопротивлений ζ_i в трубном пространстве теплообменника примем следующие значения: входная или выходная камера $\zeta_1 = 1,5$; поворот на 180° между ходами $\zeta_2 = 2,5$; вход в трубы или выход из них $\zeta_3 = 1$.

Потеря давления на местных сопротивлениях

$$\Delta p_{\rm M} = \left(2\zeta_1 + 3\zeta_2 + 8\zeta_3\right) \frac{w_{\rm m}^2 \rho_{\rm m}}{2} = 2,285 \cdot 10^3 \,\Pi a. \tag{50}$$

Мощность на прокачку воды через все теплообменники

$$\left(\Delta p_{\rm M} + \Delta p_{\rm cK} + \Delta p_{\rm T}\right) V_{\rm m} N_{out} = 2 \cdot 10^3 \,\mathrm{BT},$$

где $V_{\text{ж}}N_{out} = 0,383 \text{ м/с} - расход воды на все тепло$ обменники.

Рассмотрим возможность утилизации теплоты, отводимой из теплообменников. Для теплоприёмников местных систем теплоиспользования характерно расчётное рабочее давление 0,6 – 1,0 МПа [12]. В подающем трубопроводе за выходными задвижками на источнике теплоты рабочее давление теплоносителя при работе сетевых насосов следует принимать не менее 1,0 МПа [13]. В связи с этим минимальные затраты на прокачку воды при присоединении местной системы теплоиспользования

$$10^6 V_{\rm w} \frac{N_{out}}{0.8} = 5 \cdot 10^5 \,{\rm Bt},$$

где КПД насосной установки (произведение КПД насоса на КПД электродвигателя при номинальном режиме) взят равным 0,7. Расчётная тепловая на-

грузка на одного жителя (в пределах РФ) составляет ориентировочно $q_c = 1,6 - 2,4$ кДж/с. В связи с учётом потерь (5%) теплоты на трассе, утилизацией теплоты, отводимой из теплообменников, можно обеспечить потребности в тепле небольшого города численностью

$$\frac{\left(Q_1 N + q_v V_0\right)0,95}{2000} = 41\ 220\ \text{чел.}$$

Для коэффициентов местных сопротивлений ζ_i в межтрубном пространстве теплообменника примем следующие значения: вход в межтрубное пространство или выход из него $\zeta_1 = 1,5$; поворот на 180° через перегородку в межтрубном пространстве $\zeta_2 = 1,5$.

Потеря давления на местных сопротивлениях

$$\Delta p_{mM} = \left(2\zeta_1 + \zeta_2\right) \frac{w_{out}^2 \rho_{out}}{2} = 430,331 \,\Pi a.$$

Перепад давления на шахматном многорядном (z > 5) пучке оребрённых труб при Re равном от 10^3 до 10^5 , коэффициенте оребрения ε – от 1,9 до 16,0; a – от 1,6 до 4,13; b – от 1,2 до 2,35 определяется по зависимости [10]:

$$\Delta p_{m\tau} = 3,2 \operatorname{Re}_{f}^{-0.25} \varepsilon^{0.5} a^{-0.55} b^{-0.5} w_{out}^{2} \rho_{out} z = 1,17 \cdot 10^{3} \operatorname{\Pia}.$$

Затрата давления на создание скорости потока

$$\Delta p_{mc.\pi} = \frac{w_{out}^2 \rho_{out}}{2} = 95,629 \text{ IIa.}$$

Мощность на прокачку аргона через все тепло-обменники

$$\left(\Delta p_{mT} + \Delta p_{mc.n} + \Delta p_{mM}\right) \frac{\pi d_T^2}{4} w_{out} N_{out} = 2 \cdot 10^5 \,\mathrm{BT},$$

где $(\pi d_T^2/4) w_{out} N_{out} = 140 \text{ м}^3/\text{с} - \text{расход аргона на все теплообменники.}$

Перепад давления Δp_0 на шахматном малорядном ($z_0 = 3$) пучке при поперечном обтекании аргоном пучка гладких «труб» (зона сборок из бочек), шахматном их расположении и Re > 2.10⁵ (режим сверхкритического обтекания) [10] оценивается по формуле

$$\Delta p_0 = 0, 2z_0 c_z c_k \rho_{in} w^2 = 177 \text{ IIa},$$

где $z_0 = 3$; $c_k = 1,9$ для $\text{Re}_{in} = 10^6$; $c_z = 1,1 - \text{коэффи$ циент учитывающий зависимость гидравлическогосопротивления от числа рядов пучка.

Затрата давления на создание скорости потока

$$\Delta p_{0c.\pi} = \frac{w_{out}^2 \rho_{out}}{2} = 96 \ \Pi a.$$

Для коэффициентов местных сопротивлений ζ_i в пространстве хранилища примем следующие значения: вход в трубы (36 труб) или выход из них $\zeta_1 = 1$; вход в зону сборок или выход из неё $\zeta_2 = 1,5$; поворот на 90° в зоне сборок $\zeta_3 = 1$.

Потеря давления на местных сопротивлениях в хранилище

$$\Delta p_{0M} = \left(\zeta_1 + 2\zeta_2 + \zeta_3\right) \frac{\rho_{in} w^2}{2} + \zeta_1 \frac{w_{out}^2 \rho_{out}}{2} = 449 \,\Pi a.$$

Оценим мощность на прокачку аргона через хранилище:

$$\left[\Delta p_0 + \left(\zeta_1 + 2\zeta_2 + \zeta_3\right) \frac{\rho_{in} w^2}{2}\right] \times$$

$$\times \frac{\pi d_{\tau}^{2}}{4} w N_{out} + (\zeta_{1} + 1) \frac{w_{out}^{2} \rho_{out}}{2} \frac{\pi d_{\tau}^{2}}{4} w_{out} N_{out} = 8 \cdot 10^{4} \,\mathrm{Br}.$$

Перепад давления Δp_{12} в каждой из 2·36 труб для аргона, соединяющих хранилище и теплообменники:

$$\Delta p_{12} = \Delta p_1 + \Delta p_2;$$

$$\Delta p_i = \xi (\operatorname{Re}_i) \frac{l_i}{d} \frac{w_i^2 \rho_i}{2}$$

где i = (1, 2). Длину одной трубы с нагретым аргоном примем $l_1 = 20$ м, длину с охлаждённым арго-

ном примем $l_2 = 70$ м. Охлаждённый аргон подаётся по трубам с внутренним диаметром 0,638 м во внутреннюю часть активной зоны:

$$\operatorname{Re}_{1} = \frac{w_{out}d_{T}}{v_{out}} = 1,8 \cdot 10^{6} ;$$

$$\operatorname{Re}_{2} = \frac{3wd_{T}}{v_{in}} = 6,9 \cdot 10^{6} ;$$

$$w_{1} = w_{out} ;$$

$$w_{2} = 4w ;$$

$$\rho_{1} = \rho_{out} ;$$

$$\rho_{2} = \rho_{in} .$$

Соотношение Прандтля, которое хорошо согласуется с экспериментом в интервале чисел Re от 10^4 до $5 \cdot 10^6$:

$$\xi = (1,82\log(x) - 1,64)^{-2}$$
.

Величина перепада давления

$$\Delta p_{12} = \xi (\text{Re}_1) \frac{l_1}{d_r} \frac{w_{out}^2 \rho_{out}}{2} + \xi (\text{Re}_2) \frac{l_2 \sqrt{3}}{d_r} \frac{(3w)^2 \rho_{in}}{2} = 6,164 \,\Pi \text{a}$$

При скорости прокачки аргона (абсолютное давление 10 атм) через зону сборок 3 м/с, охлаждённого до 30°С, и нагреве до 133°С мощность на прокачку аргона составляет около 475 кВт (если КПД насосной установки 80%).

Мощность на прокачку воды (имеющую начальную температуру 30°С) через все теплообменники 2 – 3 кВт, но при присоединении местной системы теплоиспользования требуемая мощность до 500 кВт.

Прочностной расчёт

Для проведения расчётов была построена 3Dмодель хранилища для ядерных отходов при помощи программы Solid works. На рис. 6 представлена модель одной восьмой части конструкции хранилища. Радиус хранилища 40 м, высота центральной части 10 м, высота торцевой стенки 3 м.

Рис. 6. Трёхмерная модель хранилища для ядерных отходов (показана 1/8 часть)

Рис. 7. Конечно-элементная модель хранилища

Рис. 8. Толщины конструктивных элементов, м

Рис. 9. Напряжения на внешних и внутренних поверхностях конструкции, Па: *а* – вид сверху; *б* – вид сбоку; *в* – 1/8 часть (вид сбоку); *г* – 1/8 часть (вид сверху)

Для проведения прочностного расчёта использовался программный комплекс для конечноэлементного анализа механики конструкции MSC Nastran/Patran.

В процессе проведения расчёта на прочность был внесён ряд изменений в конструкцию. Были установлены внутренние усиливающие элементы, что обусловлено недостаточной жёсткостью конструкции и необходимыми требованиями для доступа к центральной части (были проделаны дополнительные отверстия в радиальных перегородках для возможности беспрепятственного доступа к центральной части, и изменены внутренние продольные перегородки для повышения жёсткости и освобождения внутреннего пространства под хранение бочек). Радиальные перегородки делят хранилище по радиусу 12 и 25 м, высота первой перегородки 9,2 м, второй – 7,2 м. Полученная модель хранилища показана на рис. 7.

Для создания внешних стенок и внутренних усилений использовались оболочечные элементы типа Tria 3. Всего модель содержит 137 530 конечных элементов, 65 877 узлов.

На рис. 8 показана цветная диаграмма толщин внешних и внутренних усилений стенок. Внешняя стенка над активной зоной хранилища (красный цвет) имеет толщину 40 см из-за большого диаметра при внутреннем давлении 10 атм. На рис. 9 показаны картины распределения эквивалентных напряжений по Мизесу для всей конструкции и для 1/8 части при внутреннем рабочем давлении 10 атм.

Максимальные напряжения возникают в центральной части конструкции на пересечении радиальной перегородки, опоясывающей активную зону, и продольным усиливающим элементом (розовый цвет) составляют 762 МПа.

Для выполнения условий прочности необходимо использование высокопрочных сталей с вязким характером разрушения (с переделом прочности не менее 800 МПа).

Заключение

Рассмотрена установка по утилизации радиоактивных отходов на основе ядерно-оптических преобразователей, в которой контейнеры с отходами складированы в центре хранилища, а насосные установки и теплообменники располагаются вне хранилища. В результате проведённых исследований установлено:

1. При прокачке газа через центральную зону хранилища с начальной температурой 30°С при давлении 10 атм и скорости течения газа 3 м/с нагрев газа на выходе из хранилища 133°С.

2. Для работы ЯОП-установки в стационарном режиме необходимо отводить тепло мощностью \approx 87 МВт, часть электрической мощности ЯОП-установки (\approx 0,5 МВт) достаточно для прокачки аргон-азотной смеси по замкнутому контуру, включающему активную зону и межтрубное пространство кожухотрубчатых теплообменников с оребрёнными трубами.

3. Мощность на прокачку охлаждающей воды через все теплообменники со скоростью 0,5 м/с при расходе 378 кг/с составляет $\approx 2 - 3$ кВт, если

использовать воду с начальной температурой 20°С с последующим сбросом воды, нагретой до 75°С в теплообменниках. Возможно присоединение местной замкнутой системы теплоиспользования, затрата электрической мощности \approx 0,5 MBт.

Теплоты, отводимой от теплообменников, хватит, чтобы обеспечить потребности в тепле небольшого города численностью 41 220 человек.

При профилактических работах на теплообменниках при отключении одного теплообменника установка будет полностью работоспособна, так как характеристики установки практически не изменятся.

Литература

1. Румянцев А. Ю. Атомная энергетика в настоящем и будущем энергообеспечении России / А. Ю. Румянцев // Вестник РАН. – 2006. – Т. 76. – № 5. – С. 409 – 412.

2. Карелин А. В. Физические основы реактора-лазера / А. В. Карелин. – М.: ФГУП «НПП ВНИИЭМ», 2007. – 260 с.

3. Карелин А. В. Радиоактивные отходы как источник дешевой электроэнергии / А. В. Карелин, Р. В. Широков // Международный научный журнал «Альтернативная энергетика и экология». – 2006. – № 9 (41). – С. 90 – 92.

4. Пат. 2388087 Российской Федерации, МПК G21H001/12. Способ преобразования излучения радиоактивных отходов в электрическую энергию / Сеиф Османович Чолах, Александр Витальевич Карелин, Юрий Николаевич Новоселов; заявл. 14.04.2008; опубл. 27.04.2010, Бюлл. № 12.

5. Карелин А. В. Теплофизические ограничения ЯОПустановки для утилизации радиоактивных отходов / А. В. Карелин, И. Н. Хиблин, Л. А. Амелин [и др.] // Вопросы электромеханики. Труды НПП ВНИИЭМ. – М. : ФГУП «НПП ВНИИЭМ», 2010. – Т. 117. – № 4. – С. 43 – 51.

6. Котельников Р. Б. Высокотемпературное ядерное топливо / Р. Б. Котельников, С. Н. Башлыков, А. И. Каштанов [и др.]. – М. : Атомиздат, 1978. – 432 с.

7. Кутателадзе О. С. Справочник по теплопередаче / О. С. Кутателадзе, В. М. Боришанский. – М. ; Л. : Гос-энергоиздат, 1959. – 414 с.

8. Эберт Г. Краткий справочник по физике / Г. Эберт ; пер. с нем. – М. : Физматгиз, 1963. – С. 552 : ил.

9. Кутателадзе С. С. Основы теории теплообмена / С. С. Кутателадзе. – М : Атомиздат, 1979. – 416 с.

10. Жукаускас А. А. Конвективный перенос в теплообменниках / А. А. Жукаускас. – М. : Наука, 1982. – 472 с.

11. Исаченко В. П. Теплопередача : учебник для энергетических вузов / В. П. Исаченко, В. А. Осипова, А. С. Сукомел. –2-е изд., перераб. и доп. – М. : Энергия, 1969. – 439 с.

12. Государственный комитет Российской Федерации по строительству и жилищно-коммунальному комплексу (ГОССТРОЙ РОССИИ). Система нормативных документов в строительстве. Строительные нормы и правила

Российской Федерации. Тепловые сети. THERMAL NETWORKS. СНиП41-02-2003.

13. Соколов Е. Я. Теплофикация и тепловые сети /

Е. Я. Соколов. – М. : Энергоиздат, 1982. – 360 с. : ил.

Поступила в редакцию 27.06.2011

Александр Витальевич Карелин, д-р физ.-мат. наук, начальник отдела, m. (985) 121-84-49, e-mal: avkarelin@mail.ru. Иван Николаевич Хиблин, аспирант, нач. лаборатории, m. (495) 366-14-11, e-mal: nilbix@mail.ru. Игорь Юрьевич Пугач, мл. научн. сотрудник, m. (495) 366-33-66, e-mal: igor.fiji@gmail.com. Леонид Алексеевич Амелин, канд. физ.-мат. наук, ст. научн. сотрудник, m. (495) 994-54-88, e-mal: am-leonid@mail.ru.